Skip to contents

Refits a SLOPE model using the optimal parameters found through cross-validation. This is a convenience function to avoid having to manually extract optimal parameters and refit.

Usage

refit(object, x, y, measure = NULL, ...)

Arguments

object

an object of class 'TrainedSLOPE', typically from a call to cvSLOPE() or trainSLOPE()

x

the design matrix

y

the response vector

measure

which performance measure to use for selecting optimal parameters. If NULL (default), uses the first measure in the TrainedSLOPE object.

...

additional arguments passed to SLOPE()

Value

An object of class 'SLOPE' fit with the optimal parameters

Examples

# Cross-validation
tune <- trainSLOPE(
  bodyfat$x,
  bodyfat$y,
  q = c(0.1, 0.2),
  measure = "mse"
)

# Refit with optimal parameters
fit <- refit(tune, bodyfat$x, bodyfat$y)

# Use the fitted model
coef(fit)
#> 14 x 1 sparse Matrix of class "dgCMatrix"
#>                   
#>  [1,] -19.28461388
#>  [2,]   0.06708922
#>  [3,]  -0.09058704
#>  [4,]  -0.06255449
#>  [5,]  -0.47348606
#>  [6,]   .         
#>  [7,]   0.93731359
#>  [8,]  -0.20162704
#>  [9,]   0.25316204
#> [10,]   .         
#> [11,]   0.18045990
#> [12,]   0.18434177
#> [13,]   0.41840188
#> [14,]  -1.63205744
predict(fit, bodyfat$x)
#>   [1] 16.056086  8.738975 18.566758 11.974815 27.044500 16.914593 16.798387
#>   [8] 13.840382  9.753032 10.089792  9.073714 12.954474 17.891100 24.871167
#>  [15] 24.055588 23.025851 23.448776 19.450162 16.865911 23.151627 21.052272
#>  [22] 19.807806  9.568734 10.996264  8.161681  8.379190  9.055239 17.953986
#>  [29]  6.345920 11.756449 14.680824 11.016217  6.041836 23.858234 32.240421
#>  [36] 37.694935 24.050434 21.905353 44.124252 32.478270 36.762291 32.350264
#>  [43] 34.316493 26.231141 10.917690 10.108578  7.834600  9.467766 17.824409
#>  [50]  5.528327 14.645791  9.469559 14.174228 10.852621  7.560541 23.513966
#>  [57] 25.806261 27.741143 28.727664 26.311434 25.340592 23.577019 27.452153
#>  [64] 27.265305 30.011204 26.188435 15.403085 15.722396  8.741738 13.825343
#>  [71] 19.568260 12.791750 11.103615 11.635469 16.905629 12.158969  8.960145
#>  [78] 19.464569 23.207286 24.790751 22.114729 18.046562 22.963636 21.402150
#>  [85] 27.238478 21.046589 17.695167 21.971795 12.731411 14.175095 21.662340
#>  [92] 17.618180 11.099640 21.670617 14.824203 16.381455 16.740131 16.229300
#>  [99] 17.745036 19.245068 18.486817 20.001274 17.239481 17.109821 23.916661
#> [106] 17.604272 25.794089 22.220341 12.639908 21.072810 19.225128 32.499840
#> [113] 20.762663 19.850776 20.198644 16.470136 16.847243 14.310972 18.084707
#> [120] 13.558696 20.238892 22.296538 14.256807 17.124878 15.582612 21.047602
#> [127] 21.411110  9.081427 18.670826 15.000158 18.348861 20.088610 24.778855
#> [134] 21.080339 16.012050 26.763065 16.597714 25.962660 17.945118 28.672522
#> [141] 21.135332 21.257444 19.034050  5.391281  9.230621 12.445779 22.400845
#> [148] 23.035719  6.130661 26.677558  8.468103 21.727570  4.099159 16.413423
#> [155] 21.338622 11.000910 28.450914 15.552440 11.371401 18.833282 11.796192
#> [162] 17.665339 15.395541 15.161942 26.895297 17.857982 17.668502 18.827338
#> [169] 37.426754 20.091931 11.586487  8.244465 16.632931 16.536697 21.723251
#> [176] 11.228186 16.002217 28.157996 20.710534 23.510013 25.067446  4.382665
#> [183] 16.258538 16.836298 17.830836 10.976317 27.527502 21.949033 22.616915
#> [190] 26.397300 10.322520 30.129669 17.958701 26.553588 16.811681 22.657546
#> [197] 17.180864 19.796101  5.794936 18.042550 15.673107 15.975623 27.569291
#> [204] 15.177829 35.775456 15.302422 22.833179 26.607801 13.905559 14.631924
#> [211] 12.749561 25.443569 15.393304 21.370995 14.334441 41.113500 11.599029
#> [218]  9.124350 23.845944 17.889809 20.838405 30.672912 17.313969 16.446033
#> [225] 20.315962 13.109515 19.119923 21.856839 17.367775 20.497351 20.138486
#> [232] 21.376196 16.519851 23.366029 21.045522 22.537465 21.532095 34.569323
#> [239] 14.444930 25.917664 15.188497 36.762930 28.134806 32.967696 29.612647
#> [246] 14.090850 30.744269 14.705182 25.882858 37.005425 24.550591 27.396597