![]() |
slope 0.29.0
|
Ordinary Least Squares (OLS) regression functionality. More...
#include <Eigen/Dense>
#include <Eigen/SparseCore>
#include <utility>
Go to the source code of this file.
Functions | |
std::pair< double, Eigen::VectorXd > | fitOls (const Eigen::MatrixXd &X, const Eigen::VectorXd &y, bool fit_intercept=true) |
Fits an OLS regression model using dense matrices. | |
std::pair< double, Eigen::VectorXd > | fitOls (const Eigen::SparseMatrix< double > &X, const Eigen::VectorXd &y, bool fit_intercept=true) |
Fits an OLS regression model using sparse matrices. | |
Ordinary Least Squares (OLS) regression functionality.
This header provides functions for fitting Ordinary Least Squares regression models using both dense and sparse matrix representations.
Definition in file ols.h.
std::pair< double, Eigen::VectorXd > fitOls | ( | const Eigen::MatrixXd & | X, |
const Eigen::VectorXd & | y, | ||
bool | fit_intercept = true |
||
) |
Fits an OLS regression model using dense matrices.
X | The design matrix with predictors (features) - dense representation |
y | The target/response vector |
fit_intercept | Whether to include an intercept term (default: true) |
std::pair< double, Eigen::VectorXd > fitOls | ( | const Eigen::SparseMatrix< double > & | X, |
const Eigen::VectorXd & | y, | ||
bool | fit_intercept = true |
||
) |
Fits an OLS regression model using sparse matrices.
X | The design matrix with predictors (features) - sparse representation |
y | The target/response vector |
fit_intercept | Whether to include an intercept term (default: true) |