slope 0.29.0
Loading...
Searching...
No Matches
regularization_sequence.cpp
2#include "math.h"
3#include "qnorm.h"
4#include "utils.h"
5#include <cassert>
6
7namespace slope {
8
9Eigen::ArrayXd
10lambdaSequence(const int p,
11 const double q,
12 const std::string& type,
13 const int n,
14 const double theta1,
15 const double theta2)
16{
17 Eigen::ArrayXd lambda(p);
18
19 validateOption(type, { "bh", "gaussian", "oscar", "lasso" }, "type");
20
21 if (type == "bh" || type == "gaussian") {
22 if (q <= 0 || q >= 1) {
23 throw std::invalid_argument("q must be between 0 and 1");
24 }
25
26 for (int j = 0; j < p; ++j) {
27 lambda(j) = normalQuantile(1.0 - (j + 1.0) * q / (2.0 * p));
28 }
29
30 if (type == "gaussian" && p > 1) {
31 if (n <= 0) {
32 throw std::invalid_argument(
33 "n must be provided (and be positive) for type 'gaussian'");
34 }
35
36 double sum_sq = 0.0;
37
38 for (int i = 1; i < p; ++i) {
39 sum_sq += std::pow(lambda(i - 1), 2);
40 double w = 1.0 / std::max(1.0, static_cast<double>(n - i - 1.0));
41
42 lambda(i) *= std::sqrt(1.0 + w * sum_sq);
43 }
44
45 // Ensure non-increasing lambda
46 for (int i = 1; i < p; ++i) {
47 if (lambda(i) > lambda(i - 1)) {
48 lambda(i) = lambda(i - 1);
49 }
50 }
51 }
52 } else if (type == "oscar") {
53 if (theta1 < 0) {
54 throw std::invalid_argument("theta1 must be non-negative");
55 }
56 if (theta2 < 0) {
57 throw std::invalid_argument("theta2 must be non-negative");
58 }
59 lambda = theta1 + theta2 * (p - Eigen::ArrayXd::LinSpaced(p, 1, p));
60 } else if (type == "lasso") {
61 lambda.setOnes();
62 }
63
64 assert(lambda.minCoeff() > 0 && "lambda must be positive");
65 assert(lambda.allFinite() && "lambda must be finite");
66 assert(lambda.size() == p && "lambda sequence is of right size");
67
68 return lambda;
69}
70
71Eigen::ArrayXd
72regularizationPath(const Eigen::ArrayXd& alpha_in,
73 const int path_length,
74 double alpha_min_ratio,
75 double alpha_max)
76{
77 if (alpha_in.size() != 0) {
78 // User-supplied alpha sequence; just check it
79 if (alpha_in.minCoeff() < 0) {
80 throw std::invalid_argument("alpha must be non-negative");
81 }
82 if (!alpha_in.isFinite().all()) {
83 throw std::invalid_argument("alpha must be finite");
84 }
85
86 return alpha_in;
87 }
88
89 Eigen::ArrayXd alpha =
90 geomSpace(alpha_max, alpha_max * alpha_min_ratio, path_length);
91
92 return alpha;
93}
94
95} // namespace slope
Mathematical support functions for the slope package.
Namespace containing SLOPE regression implementation.
Definition clusters.cpp:5
void validateOption(const std::string &value, const std::set< std::string > &valid_options, const std::string &parameter_name)
Validates if a given value exists in a set of valid options.
Definition utils.cpp:7
Eigen::ArrayXd lambdaSequence(const int p, const double q, const std::string &type, const int n, const double theta1, const double theta2)
Eigen::ArrayXd regularizationPath(const Eigen::ArrayXd &alpha_in, const int path_length, double alpha_min_ratio, double alpha_max)
Eigen::ArrayXd geomSpace(const double start, const double end, const int n)
Creates an array of n numbers in geometric progression from start to end.
Definition math.cpp:46
double normalQuantile(const double p)
Computes the quantile of a standard normal distribution using the Beasley-Springer-Moro algorithm.
Definition qnorm.cpp:9
An implementation of the quantile function for the standard normal distribution.
Functions for generating regularization sequences for SLOPE.
Various utility functions.