12 const std::string& type,
17 Eigen::ArrayXd lambda(p);
19 validateOption(type, {
"bh",
"gaussian",
"oscar",
"lasso" },
"type");
21 if (type ==
"bh" || type ==
"gaussian") {
22 if (q <= 0 || q >= 1) {
23 throw std::invalid_argument(
"q must be between 0 and 1");
26 for (
int j = 0; j < p; ++j) {
30 if (type ==
"gaussian" && p > 1) {
32 throw std::invalid_argument(
33 "n must be provided (and be positive) for type 'gaussian'");
38 for (
int i = 1; i < p; ++i) {
39 sum_sq += std::pow(lambda(i - 1), 2);
40 double w = 1.0 / std::max(1.0,
static_cast<double>(n - i - 1.0));
42 lambda(i) *= std::sqrt(1.0 + w * sum_sq);
46 for (
int i = 1; i < p; ++i) {
47 if (lambda(i) > lambda(i - 1)) {
48 lambda(i) = lambda(i - 1);
52 }
else if (type ==
"oscar") {
54 throw std::invalid_argument(
"theta1 must be non-negative");
57 throw std::invalid_argument(
"theta2 must be non-negative");
59 lambda = theta1 + theta2 * (p - Eigen::ArrayXd::LinSpaced(p, 1, p));
60 }
else if (type ==
"lasso") {
64 assert(lambda.minCoeff() > 0 &&
"lambda must be positive");
65 assert(lambda.allFinite() &&
"lambda must be finite");
66 assert(lambda.size() == p &&
"lambda sequence is of right size");
73 const int path_length,
74 double alpha_min_ratio,
77 if (alpha_in.size() != 0) {
79 if (alpha_in.minCoeff() < 0) {
80 throw std::invalid_argument(
"alpha must be non-negative");
82 if (!alpha_in.isFinite().all()) {
83 throw std::invalid_argument(
"alpha must be finite");
89 Eigen::ArrayXd alpha =
90 geomSpace(alpha_max, alpha_max * alpha_min_ratio, path_length);
Mathematical support functions for the slope package.
Namespace containing SLOPE regression implementation.
void validateOption(const std::string &value, const std::set< std::string > &valid_options, const std::string ¶meter_name)
Validates if a given value exists in a set of valid options.
Eigen::ArrayXd lambdaSequence(const int p, const double q, const std::string &type, const int n, const double theta1, const double theta2)
Eigen::ArrayXd regularizationPath(const Eigen::ArrayXd &alpha_in, const int path_length, double alpha_min_ratio, double alpha_max)
Eigen::ArrayXd geomSpace(const double start, const double end, const int n)
Creates an array of n numbers in geometric progression from start to end.
double normalQuantile(const double p)
Computes the quantile of a standard normal distribution using the Beasley-Springer-Moro algorithm.
An implementation of the quantile function for the standard normal distribution.
Functions for generating regularization sequences for SLOPE.
Various utility functions.