slope 0.29.0
Loading...
Searching...
No Matches
slope_threshold.cpp
1#include "slope_threshold.h"
2#include "../math.h"
3#include <algorithm>
4
5namespace slope {
6
7std::tuple<double, int>
8slopeThreshold(const double x,
9 const int j,
10 const Eigen::ArrayXd lambdas,
11 const Clusters& clusters)
12{
13 using std::size_t;
14
15 const size_t cluster_size = clusters.cluster_size(j);
16 const double abs_x = std::abs(x);
17 const int sign_x = sign(x);
18 const size_t n_lambda = lambdas.size();
19
20 // Prepare a lazy cumulative sum of lambdas.
21 // cum[i] holds sum_{k=0}^{i-1} lambdas(k) with cum[0] = 0.
22 std::vector<double> cum(n_lambda + 1, 0.0);
23 size_t computed = 0; // Last index for which cum has been computed.
24
25 // getCum(i) computes and returns cum[i] on demand.
26 auto getCum = [&](size_t i) -> double {
27 i = std::min(i, n_lambda); // Prevent out-of-bounds access
28 while (computed < i) {
29 computed++;
30 cum[computed] = cum[computed - 1] + lambdas(computed - 1);
31 }
32 return cum[i];
33 };
34
35 // getLambdaSum(start, len) returns sum of lambdas from start to start+len-1
36 auto getLambdaSum = [&](size_t start, size_t len) -> double {
37 return getCum(start + len) - getCum(start);
38 };
39
40 // Determine whether the update moves upward.
41 int ptr_j = clusters.pointer(j);
42 size_t len_j = std::min(n_lambda - ptr_j, cluster_size);
43 const bool direction_up =
44 abs_x - getLambdaSum(ptr_j, len_j) > clusters.coeff(j);
45
46 if (direction_up) {
47 // Moving up in the cluster ordering
48 size_t start = clusters.pointer(j + 1);
49 size_t len = std::min(n_lambda - start, cluster_size);
50 double lo = start < n_lambda ? getLambdaSum(start, len) : 0.0;
51
52 for (int k = j; k >= 0; --k) {
53 start = clusters.pointer(k);
54 len = std::min(n_lambda - start, cluster_size);
55 double hi = getLambdaSum(start, len);
56 double c_k = clusters.coeff(k);
57
58 if (abs_x < lo + c_k) {
59 return { x - sign_x * lo, k + 1 };
60 } else if (abs_x <= hi + c_k) {
61 return { sign_x * c_k, k };
62 }
63 lo = hi;
64 }
65
66 return { x - sign_x * lo, 0 };
67 } else {
68 // Moving down in the cluster ordering
69 int end = clusters.pointer(j + 1);
70 double hi = getLambdaSum(end - cluster_size, cluster_size);
71
72 for (int k = j + 1; k < clusters.n_clusters(); ++k) {
73 end = clusters.pointer(k + 1);
74 double lo = getLambdaSum(end - cluster_size, cluster_size);
75 double c_k = clusters.coeff(k);
76
77 if (abs_x > hi + c_k) {
78 return { x - sign_x * hi, k - 1 };
79 } else if (abs_x >= lo + c_k) {
80 return { sign_x * c_k, k };
81 }
82 hi = lo;
83 }
84
85 if (abs_x > hi) {
86 return { x - sign_x * hi, clusters.n_clusters() - 1 };
87 } else {
88 return { 0, clusters.n_clusters() - 1 };
89 }
90 }
91}
92
93}
Representation of the clusters in SLOPE.
Definition clusters.h:18
double coeff(const int i) const
Returns the coefficient of the cluster with the given index.
Definition clusters.cpp:117
int cluster_size(const int i) const
Returns the size of the cluster with the given index.
Definition clusters.cpp:78
int pointer(const int i) const
Returns the pointer of the cluster with the given index.
Definition clusters.cpp:93
int n_clusters() const
Returns the number of clusters.
Definition clusters.cpp:103
Namespace containing SLOPE regression implementation.
Definition clusters.cpp:5
int sign(T val)
Returns the sign of a given value.
Definition math.h:31
std::tuple< double, int > slopeThreshold(const double x, const int j, const Eigen::ArrayXd lambdas, const Clusters &clusters)
The declaration of the slopeThreshold function.