![]() |
slope 0.29.0
|
Mean Absolute Error (MAE) scoring metric. More...
#include <score.h>
Public Member Functions | |
double | eval (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y, const std::unique_ptr< Loss > &) const override |
![]() | |
bool | isWorse (double a, double b) const override |
double | initValue () const override |
![]() | |
std::function< bool(double, double)> | getComparator () const |
Additional Inherited Members | |
![]() | |
static std::unique_ptr< Score > | create (const std::string &metric) |
Mean Absolute Error (MAE) scoring metric.
Computes the average absolute difference between predictions and true responses. Inherits from MinimizeScore since lower MAE values indicate better fit.
MAE = (1/n) Σ|y_i - η_i| where:
MAE is more robust to outliers compared to MSE as it uses absolute rather than squared differences.
|
overridevirtual |
Evaluates the MAE between predictions and true responses.
eta | Matrix of model predictions |
y | Matrix of true responses |
Implements slope::Score.