![]() |
slope 0.29.0
|
Loss function interface. More...
#include <loss.h>
Public Member Functions | |
virtual | ~Loss ()=default |
Destructor for the Loss class. | |
virtual double | loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)=0 |
Calculates the loss function. | |
virtual double | dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w)=0 |
Calculates the dual loss. | |
virtual Eigen::MatrixXd | residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)=0 |
Calculates the residual. | |
virtual void | updateWeightsAndWorkingResponse (Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y)=0 |
Updates the weights and working response. | |
virtual Eigen::MatrixXd | preprocessResponse (const Eigen::MatrixXd &y)=0 |
Preprocess response. | |
virtual void | updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Updates the intercept with a gradient descent update. Also updates the linear predictor (but not the residual). | |
virtual Eigen::MatrixXd | link (const Eigen::MatrixXd &mu)=0 |
The link function. | |
virtual Eigen::MatrixXd | inverseLink (const Eigen::MatrixXd &eta)=0 |
The inverse link function, also known as the mean function. | |
virtual Eigen::MatrixXd | predict (const Eigen::MatrixXd &eta)=0 |
Return predicted response. | |
virtual double | deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model. | |
Protected Member Functions | |
Loss (double lipschitz_constant) | |
Constructs an loss function with specified Lipschitz constant. | |
Loss function interface.
This class defines the interface for an loss function, which is used in optimization algorithms. The loss function calculates the loss, dual, residual, and updates the weights and working response.
|
inlineexplicitprotected |
Constructs an loss function with specified Lipschitz constant.
lipschitz_constant | The Lipschitz constant for the loss function |
The Lipschitz constant is used to ensure convergence in gradient-based optimization by bounding the rate of change of the gradient.
|
inlinevirtual |
|
pure virtual |
Calculates the dual loss.
This function calculates the dual function given the estimated parameters (theta) and the true values (y).
theta | The estimated parameters. |
y | The true values. |
w | Weights. |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
The inverse link function, also known as the mean function.
eta | Mean |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
The link function.
mu | Mean. |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
Calculates the loss function.
This function calculates the loss function given the predicted values (eta) and the true values (y).
eta | The predicted values. |
y | The true values. |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
Return predicted response.
eta | The linear predictor |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
Preprocess response.
y | The response |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
pure virtual |
Calculates the residual.
This function calculates the residual given the predicted values (eta) and the true values (y).
eta | The predicted values. |
y | The true values. |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.
|
inlinevirtual |
Updates the intercept with a gradient descent update. Also updates the linear predictor (but not the residual).
beta0 | The current intercept |
eta | The current linear predictor |
y | The observed counts vector |
Reimplemented in slope::Poisson.
|
pure virtual |
Updates the weights and working response.
This function updates the weights and working response given the predicted values (eta) and the true values (y).
w | The weights to be updated. |
z | The working response to be updated. |
eta | The predicted values. |
y | The true values. |
Implemented in slope::Logistic, slope::Multinomial, slope::Quadratic, and slope::Poisson.