slope 0.29.0
Loading...
Searching...
No Matches
slope::NoScreening Class Reference

No screening rule - uses all variables. More...

#include <screening.h>

Inheritance diagram for slope::NoScreening:
Collaboration diagram for slope::NoScreening:

Public Member Functions

std::vector< int > initialize (const std::vector< int > &full_set, int alpha_max_ind) override
 Initialize the screening rule at the start of the path algorithm.
 
std::vector< int > screen (Eigen::VectorXd &gradient, const Eigen::ArrayXd &lambda_curr, const Eigen::ArrayXd &lambda_prev, const Eigen::VectorXd &beta, const std::vector< int > &full_set) override
 Screen for the next path step.
 
bool checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set) override
 Check for KKT violations and update working set if necessary.
 
bool checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set) override
 Check for KKT violations with sparse matrix input.
 
std::string toString () const override
 Get string representation of the screening rule.
 
- Public Member Functions inherited from slope::ScreeningRule
virtual ~ScreeningRule ()=default
 Virtual destructor.
 

Additional Inherited Members

- Protected Attributes inherited from slope::ScreeningRule
std::vector< int > strong_set
 Strong set of variables.
 

Detailed Description

No screening rule - uses all variables.

Definition at line 149 of file screening.h.

Member Function Documentation

◆ checkKktViolations() [1/2]

bool slope::NoScreening::checkKktViolations ( Eigen::VectorXd &  gradient,
const Eigen::VectorXd &  beta,
const Eigen::ArrayXd &  lambda_curr,
std::vector< int > &  working_set,
const Eigen::MatrixXd &  x,
const Eigen::MatrixXd &  residual,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
JitNormalization  jit_normalization,
const std::vector< int > &  full_set 
)
overridevirtual

Check for KKT violations and update working set if necessary.

Parameters
gradientThe gradient vector
betaCurrent beta coefficients
lambda_currCurrent lambda values
working_setCurrent working set (will be updated if violations found)
xDesign matrix
residualCurrent residuals
x_centersCenters for normalization
x_scalesScales for normalization
jit_normalizationWhether to use JIT normalization
full_setFull set of features
Returns
True if no violations found, false otherwise

Implements slope::ScreeningRule.

Definition at line 94 of file screening.cpp.

◆ checkKktViolations() [2/2]

bool slope::NoScreening::checkKktViolations ( Eigen::VectorXd &  gradient,
const Eigen::VectorXd &  beta,
const Eigen::ArrayXd &  lambda_curr,
std::vector< int > &  working_set,
const Eigen::SparseMatrix< double > &  x,
const Eigen::MatrixXd &  residual,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
JitNormalization  jit_normalization,
const std::vector< int > &  full_set 
)
overridevirtual

Check for KKT violations with sparse matrix input.

Parameters
gradientThe gradient vector
betaCurrent beta coefficients
lambda_currCurrent lambda values
working_setCurrent working set (will be updated if violations found)
xDesign matrix (sparse format)
residualCurrent residuals
x_centersCenters for normalization
x_scalesScales for normalization
jit_normalizationWhether to use JIT normalization
full_setFull set of features
Returns
True if no violations found, false otherwise

Implements slope::ScreeningRule.

Definition at line 109 of file screening.cpp.

◆ initialize()

std::vector< int > slope::NoScreening::initialize ( const std::vector< int > &  full_set,
int  alpha_max_ind 
)
overridevirtual

Initialize the screening rule at the start of the path algorithm.

Parameters
full_setThe full set of feature indices
alpha_max_indThe index of the feature with maximum absolute gradient
Returns
The initial working set

Implements slope::ScreeningRule.

Definition at line 77 of file screening.cpp.

◆ screen()

std::vector< int > slope::NoScreening::screen ( Eigen::VectorXd &  gradient,
const Eigen::ArrayXd &  lambda_curr,
const Eigen::ArrayXd &  lambda_prev,
const Eigen::VectorXd &  beta,
const std::vector< int > &  full_set 
)
overridevirtual

Screen for the next path step.

Parameters
gradientThe gradient vector
lambda_currCurrent lambda values
lambda_prevPrevious lambda values
betaCurrent beta coefficients
full_setFull set of features
Returns
Working set for the current path step

Implements slope::ScreeningRule.

Definition at line 83 of file screening.cpp.

◆ toString()

std::string slope::NoScreening::toString ( ) const
overridevirtual

Get string representation of the screening rule.

Returns
Name of the screening rule

Implements slope::ScreeningRule.

Definition at line 124 of file screening.cpp.


The documentation for this class was generated from the following files: