slope 0.29.0
Loading...
Searching...
No Matches
slope::ScreeningRule Class Referenceabstract

Base class for screening rules in SLOPE. More...

#include <screening.h>

Inheritance diagram for slope::ScreeningRule:

Public Member Functions

virtual ~ScreeningRule ()=default
 Virtual destructor.
 
virtual std::vector< int > initialize (const std::vector< int > &full_set, int alpha_max_ind)=0
 Initialize the screening rule at the start of the path algorithm.
 
virtual std::vector< int > screen (Eigen::VectorXd &gradient, const Eigen::ArrayXd &lambda_curr, const Eigen::ArrayXd &lambda_prev, const Eigen::VectorXd &beta, const std::vector< int > &full_set)=0
 Screen for the next path step.
 
virtual bool checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set)=0
 Check for KKT violations and update working set if necessary.
 
virtual bool checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set)=0
 Check for KKT violations with sparse matrix input.
 
virtual std::string toString () const =0
 Get string representation of the screening rule.
 

Protected Attributes

std::vector< int > strong_set
 Strong set of variables.
 

Detailed Description

Base class for screening rules in SLOPE.

This abstract class defines the interface for screening rules to accelerate optimization by reducing the problem size.

Definition at line 47 of file screening.h.

Member Function Documentation

◆ checkKktViolations() [1/2]

virtual bool slope::ScreeningRule::checkKktViolations ( Eigen::VectorXd &  gradient,
const Eigen::VectorXd &  beta,
const Eigen::ArrayXd &  lambda_curr,
std::vector< int > &  working_set,
const Eigen::MatrixXd &  x,
const Eigen::MatrixXd &  residual,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
JitNormalization  jit_normalization,
const std::vector< int > &  full_set 
)
pure virtual

Check for KKT violations and update working set if necessary.

Parameters
gradientThe gradient vector
betaCurrent beta coefficients
lambda_currCurrent lambda values
working_setCurrent working set (will be updated if violations found)
xDesign matrix
residualCurrent residuals
x_centersCenters for normalization
x_scalesScales for normalization
jit_normalizationWhether to use JIT normalization
full_setFull set of features
Returns
True if no violations found, false otherwise

Implemented in slope::NoScreening, and slope::StrongScreening.

◆ checkKktViolations() [2/2]

virtual bool slope::ScreeningRule::checkKktViolations ( Eigen::VectorXd &  gradient,
const Eigen::VectorXd &  beta,
const Eigen::ArrayXd &  lambda_curr,
std::vector< int > &  working_set,
const Eigen::SparseMatrix< double > &  x,
const Eigen::MatrixXd &  residual,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
JitNormalization  jit_normalization,
const std::vector< int > &  full_set 
)
pure virtual

Check for KKT violations with sparse matrix input.

Parameters
gradientThe gradient vector
betaCurrent beta coefficients
lambda_currCurrent lambda values
working_setCurrent working set (will be updated if violations found)
xDesign matrix (sparse format)
residualCurrent residuals
x_centersCenters for normalization
x_scalesScales for normalization
jit_normalizationWhether to use JIT normalization
full_setFull set of features
Returns
True if no violations found, false otherwise

Implemented in slope::NoScreening, and slope::StrongScreening.

◆ initialize()

virtual std::vector< int > slope::ScreeningRule::initialize ( const std::vector< int > &  full_set,
int  alpha_max_ind 
)
pure virtual

Initialize the screening rule at the start of the path algorithm.

Parameters
full_setThe full set of feature indices
alpha_max_indThe index of the feature with maximum absolute gradient
Returns
The initial working set

Implemented in slope::NoScreening, and slope::StrongScreening.

◆ screen()

virtual std::vector< int > slope::ScreeningRule::screen ( Eigen::VectorXd &  gradient,
const Eigen::ArrayXd &  lambda_curr,
const Eigen::ArrayXd &  lambda_prev,
const Eigen::VectorXd &  beta,
const std::vector< int > &  full_set 
)
pure virtual

Screen for the next path step.

Parameters
gradientThe gradient vector
lambda_currCurrent lambda values
lambda_prevPrevious lambda values
betaCurrent beta coefficients
full_setFull set of features
Returns
Working set for the current path step

Implemented in slope::NoScreening, and slope::StrongScreening.

◆ toString()

virtual std::string slope::ScreeningRule::toString ( ) const
pure virtual

Get string representation of the screening rule.

Returns
Name of the screening rule

Implemented in slope::NoScreening, and slope::StrongScreening.

Member Data Documentation

◆ strong_set

std::vector<int> slope::ScreeningRule::strong_set
protected

Strong set of variables.

Definition at line 142 of file screening.h.


The documentation for this class was generated from the following file: