Base class for screening rules in SLOPE.
More...
#include <screening.h>
|
virtual | ~ScreeningRule ()=default |
| Virtual destructor.
|
|
virtual std::vector< int > | initialize (const std::vector< int > &full_set, int alpha_max_ind)=0 |
| Initialize the screening rule at the start of the path algorithm.
|
|
virtual std::vector< int > | screen (Eigen::VectorXd &gradient, const Eigen::ArrayXd &lambda_curr, const Eigen::ArrayXd &lambda_prev, const Eigen::VectorXd &beta, const std::vector< int > &full_set)=0 |
| Screen for the next path step.
|
|
virtual bool | checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set)=0 |
| Check for KKT violations and update working set if necessary.
|
|
virtual bool | checkKktViolations (Eigen::VectorXd &gradient, const Eigen::VectorXd &beta, const Eigen::ArrayXd &lambda_curr, std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::MatrixXd &residual, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, JitNormalization jit_normalization, const std::vector< int > &full_set)=0 |
| Check for KKT violations with sparse matrix input.
|
|
virtual std::string | toString () const =0 |
| Get string representation of the screening rule.
|
|
|
std::vector< int > | strong_set |
| Strong set of variables.
|
|
Base class for screening rules in SLOPE.
This abstract class defines the interface for screening rules to accelerate optimization by reducing the problem size.
Definition at line 47 of file screening.h.
◆ checkKktViolations() [1/2]
virtual bool slope::ScreeningRule::checkKktViolations |
( |
Eigen::VectorXd & |
gradient, |
|
|
const Eigen::VectorXd & |
beta, |
|
|
const Eigen::ArrayXd & |
lambda_curr, |
|
|
std::vector< int > & |
working_set, |
|
|
const Eigen::MatrixXd & |
x, |
|
|
const Eigen::MatrixXd & |
residual, |
|
|
const Eigen::VectorXd & |
x_centers, |
|
|
const Eigen::VectorXd & |
x_scales, |
|
|
JitNormalization |
jit_normalization, |
|
|
const std::vector< int > & |
full_set |
|
) |
| |
|
pure virtual |
Check for KKT violations and update working set if necessary.
- Parameters
-
gradient | The gradient vector |
beta | Current beta coefficients |
lambda_curr | Current lambda values |
working_set | Current working set (will be updated if violations found) |
x | Design matrix |
residual | Current residuals |
x_centers | Centers for normalization |
x_scales | Scales for normalization |
jit_normalization | Whether to use JIT normalization |
full_set | Full set of features |
- Returns
- True if no violations found, false otherwise
Implemented in slope::NoScreening, and slope::StrongScreening.
◆ checkKktViolations() [2/2]
virtual bool slope::ScreeningRule::checkKktViolations |
( |
Eigen::VectorXd & |
gradient, |
|
|
const Eigen::VectorXd & |
beta, |
|
|
const Eigen::ArrayXd & |
lambda_curr, |
|
|
std::vector< int > & |
working_set, |
|
|
const Eigen::SparseMatrix< double > & |
x, |
|
|
const Eigen::MatrixXd & |
residual, |
|
|
const Eigen::VectorXd & |
x_centers, |
|
|
const Eigen::VectorXd & |
x_scales, |
|
|
JitNormalization |
jit_normalization, |
|
|
const std::vector< int > & |
full_set |
|
) |
| |
|
pure virtual |
Check for KKT violations with sparse matrix input.
- Parameters
-
gradient | The gradient vector |
beta | Current beta coefficients |
lambda_curr | Current lambda values |
working_set | Current working set (will be updated if violations found) |
x | Design matrix (sparse format) |
residual | Current residuals |
x_centers | Centers for normalization |
x_scales | Scales for normalization |
jit_normalization | Whether to use JIT normalization |
full_set | Full set of features |
- Returns
- True if no violations found, false otherwise
Implemented in slope::NoScreening, and slope::StrongScreening.
◆ initialize()
virtual std::vector< int > slope::ScreeningRule::initialize |
( |
const std::vector< int > & |
full_set, |
|
|
int |
alpha_max_ind |
|
) |
| |
|
pure virtual |
Initialize the screening rule at the start of the path algorithm.
- Parameters
-
full_set | The full set of feature indices |
alpha_max_ind | The index of the feature with maximum absolute gradient |
- Returns
- The initial working set
Implemented in slope::NoScreening, and slope::StrongScreening.
◆ screen()
virtual std::vector< int > slope::ScreeningRule::screen |
( |
Eigen::VectorXd & |
gradient, |
|
|
const Eigen::ArrayXd & |
lambda_curr, |
|
|
const Eigen::ArrayXd & |
lambda_prev, |
|
|
const Eigen::VectorXd & |
beta, |
|
|
const std::vector< int > & |
full_set |
|
) |
| |
|
pure virtual |
Screen for the next path step.
- Parameters
-
gradient | The gradient vector |
lambda_curr | Current lambda values |
lambda_prev | Previous lambda values |
beta | Current beta coefficients |
full_set | Full set of features |
- Returns
- Working set for the current path step
Implemented in slope::NoScreening, and slope::StrongScreening.
◆ toString()
virtual std::string slope::ScreeningRule::toString |
( |
| ) |
const |
|
pure virtual |
◆ strong_set
std::vector<int> slope::ScreeningRule::strong_set |
|
protected |
The documentation for this class was generated from the following file: