2#include "../constants.h"
11 eta.array().exp().log1p().sum() - y.reshaped().dot(eta.reshaped());
12 return loss / y.rows();
17 const Eigen::MatrixXd& y,
18 const Eigen::VectorXd&)
26 return -(pr * log(pr) + (1.0 - pr) * log(1.0 - pr)).mean();
32 return 1.0 / (1.0 + (-eta).array().exp()) - y.array();
39 Eigen::MatrixXd y_clamped = y.array().min(1.0).max(0.0);
42 if ((y_clamped.array() != 0.0 && y_clamped.array() != 1.0).any()) {
43 throw std::invalid_argument(
"Response must be binary");
52 const Eigen::VectorXd& eta,
53 const Eigen::VectorXd& y)
55 Eigen::ArrayXd pr = (1.0 / (1.0 + (-eta.array()).exp()))
59 z = eta.array() + (y.array() - pr) / w.array();
65 return mu.unaryExpr([](
const double& x) {
74 [](
const double& x) {
return 1.0 / (1.0 + std::exp(-x)); });
81 return prob.unaryExpr([](
double pr) {
return pr > 0.5 ? 1.0 : 0.0; });
Eigen::MatrixXd preprocessResponse(const Eigen::MatrixXd &y)
Preprocesses the response for the quadratic model.
double dual(const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w)
Calculates the dual for the logistic loss function.
Eigen::MatrixXd inverseLink(const Eigen::MatrixXd &eta)
The inverse link function, also known as the mean function.
void updateWeightsAndWorkingResponse(Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y)
Updates the weights and working response for the logistic loss function.
Eigen::MatrixXd residual(const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
Calculates the residual for the logistic loss function.
double loss(const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
Calculates the loss for the logistic loss function.
Eigen::MatrixXd predict(const Eigen::MatrixXd &eta)
Return predicted response, that is 0 or 1 depending on the predicted probabilities.
Eigen::MatrixXd link(const Eigen::MatrixXd &mu)
The link function.
Logistic loss function implementation for SLOPE algorithm.
constexpr double P_MIN
Minimum allowed probability value to avoid numerical underflow.
constexpr double P_MAX
Maximum allowed probability value to avoid numerical issues near 1.0.
Namespace containing SLOPE regression implementation.