|
| double | loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
| | Calculates the loss for the logistic loss function.
|
| |
| double | dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w) |
| | Calculates the dual for the logistic loss function.
|
| |
| Eigen::MatrixXd | hessianDiagonal (const Eigen::MatrixXd &eta) |
| | Calculates hessian diagonal.
|
| |
| Eigen::MatrixXd | preprocessResponse (const Eigen::MatrixXd &y) |
| | Preprocesses the response for the quadratic model.
|
| |
| Eigen::MatrixXd | link (const Eigen::MatrixXd &mu) |
| | The link function.
|
| |
| Eigen::MatrixXd | inverseLink (const Eigen::MatrixXd &eta) |
| | The inverse link function, also known as the mean function.
|
| |
| Eigen::MatrixXd | predict (const Eigen::MatrixXd &eta) |
| | Return predicted response, that is 0 or 1 depending on the predicted probabilities.
|
| |
|
virtual | ~Loss ()=default |
| | Destructor for the Loss class.
|
| |
| Eigen::MatrixXd | residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
| | Calculates the generalized residual.
|
| |
| virtual void | updateWeightsAndWorkingResponse (Eigen::MatrixXd &w, Eigen::MatrixXd &z, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
| | Updates weights and working response.
|
| |
| virtual void | updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
| | Updates the intercept with a gradient descent update.
|
| |
| virtual double | deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
| | Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model.
|
| |
The Logistic class represents a logistic loss function.
The logistic loss function is used for binary classification problems. It calculates the loss, dual, residual, and updates weights and working response.
Definition at line 18 of file logistic.h.