![]() |
slope 0.29.0
|
The Logistic class represents a logistic loss function. More...
#include <logistic.h>
Public Member Functions | |
double | loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Calculates the loss for the logistic loss function. | |
double | dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w) |
Calculates the dual for the logistic loss function. | |
Eigen::MatrixXd | residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Calculates the residual for the logistic loss function. | |
Eigen::MatrixXd | preprocessResponse (const Eigen::MatrixXd &y) |
Preprocesses the response for the quadratic model. | |
void | updateWeightsAndWorkingResponse (Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y) |
Updates the weights and working response for the logistic loss function. | |
Eigen::MatrixXd | link (const Eigen::MatrixXd &mu) |
The link function. | |
Eigen::MatrixXd | inverseLink (const Eigen::MatrixXd &eta) |
The inverse link function, also known as the mean function. | |
Eigen::MatrixXd | predict (const Eigen::MatrixXd &eta) |
Return predicted response, that is 0 or 1 depending on the predicted probabilities. | |
![]() | |
virtual | ~Loss ()=default |
Destructor for the Loss class. | |
virtual void | updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Updates the intercept with a gradient descent update. Also updates the linear predictor (but not the residual). | |
virtual double | deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model. | |
Additional Inherited Members | |
![]() | |
Loss (double lipschitz_constant) | |
Constructs an loss function with specified Lipschitz constant. | |
The Logistic class represents a logistic loss function.
The logistic loss function is used for binary classification problems. It calculates the loss, dual, residual, and updates weights and working response.
Definition at line 18 of file logistic.h.
|
inlineexplicit |
Definition at line 21 of file logistic.h.
|
virtual |
Calculates the dual for the logistic loss function.
theta | The dual variables. |
y | The true labels. |
w | Weights |
Implements slope::Loss.
Definition at line 16 of file logistic.cpp.
|
virtual |
The inverse link function, also known as the mean function.
eta | Mean |
Implements slope::Loss.
Definition at line 71 of file logistic.cpp.
|
virtual |
The link function.
mu | Mean |
Implements slope::Loss.
Definition at line 63 of file logistic.cpp.
|
virtual |
Calculates the loss for the logistic loss function.
eta | The predicted values. |
y | The true labels. |
Implements slope::Loss.
Definition at line 8 of file logistic.cpp.
|
virtual |
Return predicted response, that is 0 or 1 depending on the predicted probabilities.
eta | The linear predictor |
Implements slope::Loss.
Definition at line 78 of file logistic.cpp.
|
virtual |
Preprocesses the response for the quadratic model.
Checks if the response is in {0, 1} and converts it otherwise
y | Response vector (in {0,1}) |
Implements slope::Loss.
Definition at line 36 of file logistic.cpp.
|
virtual |
Calculates the residual for the logistic loss function.
eta | The predicted values. |
y | The true labels. |
Implements slope::Loss.
Definition at line 30 of file logistic.cpp.
|
virtual |
Updates the weights and working response for the logistic loss function.
w | The weights. |
z | The working response. |
eta | The predicted values. |
y | The true labels. |
Implements slope::Loss.
Definition at line 50 of file logistic.cpp.