2#include "../constants.h"
5#include <unordered_set>
16 assert(out == out &&
"Loss is NaN");
18 out -= (y.array() * eta.array()).sum() / n;
25 const Eigen::MatrixXd& y,
26 const Eigen::VectorXd&)
28 const Eigen::MatrixXd r = theta + y;
30 return -(r.array() * r.array().max(
constants::P_MIN).log()).sum() / y.rows();
42 const int n = y.rows();
45 Eigen::MatrixXd result;
49 m = y.array().maxCoeff() + 1;
52 throw std::invalid_argument(
"Only one class found in response");
55 result = Eigen::MatrixXd::Zero(n, m);
57 for (
int i = 0; i < n; i++) {
58 int class_label =
static_cast<int>(y(i, 0));
59 if (class_label < 0) {
60 throw std::invalid_argument(
61 "Class labels must be consecutive integers starting from 0");
64 result(i, class_label) = 1.0;
70 if (y_unique.size() > 2) {
71 throw std::invalid_argument(
72 "Expected binary labels (0/1) but found more than two unique values");
75 for (
const auto& val : y_unique) {
76 if (val != 0.0 && val != 1.0) {
77 throw std::invalid_argument(
78 "Expected binary labels with values 0 and 1 only");
91 const Eigen::VectorXd&,
92 const Eigen::VectorXd&)
94 throw std::runtime_error(
"Multinomial loss does not currently support IRLS");
100 return mu.unaryExpr([](
const double& x) {
117 Eigen::VectorXd out(eta.rows());
119 for (
int i = 0; i < eta.rows(); i++) {
double dual(const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w)
Calculates the dual for the multinomial loss function.
void updateWeightsAndWorkingResponse(Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y)
Updates the weights and working response for the multinomial loss function. Currently not implemented...
Eigen::MatrixXd inverseLink(const Eigen::MatrixXd &eta)
The inverse link function, also known as the mean function.
Eigen::MatrixXd preprocessResponse(const Eigen::MatrixXd &y)
Preprocesses the response for the Multinomial model.
Eigen::MatrixXd predict(const Eigen::MatrixXd &eta)
Return predicted response, which is an integer class label based on the predicted probabilities.
Eigen::MatrixXd link(const Eigen::MatrixXd &mu)
The link function.
Eigen::MatrixXd residual(const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
Calculates the residual for the multinomial loss function.
double loss(const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
Calculates the loss for the multinomial loss function.
Multinomial loss function implementation for SLOPE algorithm.
constexpr double P_MIN
Minimum allowed probability value to avoid numerical underflow.
constexpr double P_MAX
Maximum allowed probability value to avoid numerical issues near 1.0.
Namespace containing SLOPE regression implementation.
std::unordered_set< double > unique(const Eigen::MatrixXd &x)
Create a set of unique values from an Eigen matrix.
Eigen::VectorXd logSumExp(const Eigen::MatrixXd &a)
Eigen::MatrixXd softmax(const Eigen::MatrixXd &a)
int whichMax(const T &x)
Returns the index of the maximum element in a container.