slope 0.29.0
Loading...
Searching...
No Matches
slope::Multinomial Class Reference

The Multinomial class represents a multinomial logistic regression loss function. More...

#include <multinomial.h>

Inheritance diagram for slope::Multinomial:
Collaboration diagram for slope::Multinomial:

Public Member Functions

double loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
 Calculates the loss for the multinomial loss function.
 
double dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w)
 Calculates the dual for the multinomial loss function.
 
Eigen::MatrixXd residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
 Calculates the residual for the multinomial loss function.
 
Eigen::MatrixXd preprocessResponse (const Eigen::MatrixXd &y)
 Preprocesses the response for the Multinomial model.
 
void updateWeightsAndWorkingResponse (Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y)
 Updates the weights and working response for the multinomial loss function. Currently not implemented since there is no coordinate descent solver for the multinomial logistic regression loss.
 
Eigen::MatrixXd link (const Eigen::MatrixXd &mu)
 The link function.
 
Eigen::MatrixXd inverseLink (const Eigen::MatrixXd &eta)
 The inverse link function, also known as the mean function.
 
Eigen::MatrixXd predict (const Eigen::MatrixXd &eta)
 Return predicted response, which is an integer class label based on the predicted probabilities.
 
- Public Member Functions inherited from slope::Loss
virtual ~Loss ()=default
 Destructor for the Loss class.
 
virtual void updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
 Updates the intercept with a gradient descent update. Also updates the linear predictor (but not the residual).
 
virtual double deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y)
 Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model.
 

Additional Inherited Members

- Protected Member Functions inherited from slope::Loss
 Loss (double lipschitz_constant)
 Constructs an loss function with specified Lipschitz constant.
 

Detailed Description

The Multinomial class represents a multinomial logistic regression loss function.

The multinomial loss function is used for multi-class classification problems. It calculates the loss, dual, residual, and updates weights and working response. Assumes the response y is a one-hot encoded matrix where each row sums to 1.

Definition at line 20 of file multinomial.h.

Constructor & Destructor Documentation

◆ Multinomial()

slope::Multinomial::Multinomial ( )
inlineexplicit

Definition at line 23 of file multinomial.h.

Member Function Documentation

◆ dual()

double slope::Multinomial::dual ( const Eigen::MatrixXd &  theta,
const Eigen::MatrixXd &  y,
const Eigen::VectorXd &  w 
)
virtual

Calculates the dual for the multinomial loss function.

Parameters
thetaThe dual variables (n x k matrix).
yThe true labels (n x k matrix of one-hot encoded class memberships).
wThe weights vector.
Returns
The dual value.

Implements slope::Loss.

Definition at line 24 of file multinomial.cpp.

◆ inverseLink()

Eigen::MatrixXd slope::Multinomial::inverseLink ( const Eigen::MatrixXd &  eta)
virtual

The inverse link function, also known as the mean function.

Parameters
eta
Returns
The softmax of the linear predictor: \( \frac{e^{\eta}}{\sum_{j=1}^{k} e^{\eta_j}} \)

Implements slope::Loss.

Definition at line 106 of file multinomial.cpp.

◆ link()

Eigen::MatrixXd slope::Multinomial::link ( const Eigen::MatrixXd &  mu)
virtual

The link function.

Parameters
muMean.
Returns
The result of applying the link function.

Implements slope::Loss.

Definition at line 98 of file multinomial.cpp.

◆ loss()

double slope::Multinomial::loss ( const Eigen::MatrixXd &  eta,
const Eigen::MatrixXd &  y 
)
virtual

Calculates the loss for the multinomial loss function.

Parameters
etaThe predicted values (n x k matrix of linear predictors).
yThe true labels (n x k matrix of one-hot encoded class memberships).
Returns
The loss value.

Implements slope::Loss.

Definition at line 10 of file multinomial.cpp.

◆ predict()

Eigen::MatrixXd slope::Multinomial::predict ( const Eigen::MatrixXd &  eta)
virtual

Return predicted response, which is an integer class label based on the predicted probabilities.

Parameters
etaThe linear predictor
Returns
The predicted response

Implements slope::Loss.

Definition at line 112 of file multinomial.cpp.

◆ preprocessResponse()

Eigen::MatrixXd slope::Multinomial::preprocessResponse ( const Eigen::MatrixXd &  y)
virtual

Preprocesses the response for the Multinomial model.

Parameters
yPredicted values vector (n x 1) of integer class labels
Returns
Matrix of response (n x 1)

Implements slope::Loss.

Definition at line 40 of file multinomial.cpp.

◆ residual()

Eigen::MatrixXd slope::Multinomial::residual ( const Eigen::MatrixXd &  eta,
const Eigen::MatrixXd &  y 
)
virtual

Calculates the residual for the multinomial loss function.

Parameters
etaThe predicted values (n x k matrix of linear predictors).
yThe true labels (n x k matrix of one-hot encoded class memberships).
Returns
The residual matrix (n x k).

Implements slope::Loss.

Definition at line 34 of file multinomial.cpp.

◆ updateWeightsAndWorkingResponse()

void slope::Multinomial::updateWeightsAndWorkingResponse ( Eigen::VectorXd &  w,
Eigen::VectorXd &  z,
const Eigen::VectorXd &  eta,
const Eigen::VectorXd &  y 
)
virtual

Updates the weights and working response for the multinomial loss function. Currently not implemented since there is no coordinate descent solver for the multinomial logistic regression loss.

Parameters
wThe weights vector.
zThe working response vector.
etaThe predicted values (n x k matrix of linear predictors).
yThe true labels (n x k matrix of one-hot encoded class memberships).

Implements slope::Loss.

Definition at line 89 of file multinomial.cpp.


The documentation for this class was generated from the following files: