12#include <Eigen/SparseCore>
28 Eigen::VectorXd intercepts;
29 Eigen::SparseMatrix<double> coefs;
30 std::vector<std::vector<int>>
33 Eigen::ArrayXd lambda;
40 std::vector<double> time;
42 std::string centering_type;
43 std::string scaling_type;
44 std::string loss_type;
69 const Eigen::SparseMatrix<double>& coefs,
70 const std::vector<std::vector<int>>& clusters,
72 const Eigen::ArrayXd& lambda,
73 const double deviance,
74 const double null_deviance,
75 const std::vector<double>& primals,
76 const std::vector<double>& duals,
77 const std::vector<double>& time,
79 const std::string& centering_type,
80 const std::string& scaling_type)
81 : intercepts{ intercepts }
83 , clusters{ clusters }
86 , deviance{ deviance }
87 , null_deviance{ null_deviance }
92 , centering_type{ centering_type }
93 , scaling_type{ scaling_type }
105 const Eigen::SparseMatrix<double>&
getCoefs()
const {
return coefs; }
110 const std::vector<std::vector<int>>&
getClusters()
const {
return clusters; }
115 const Eigen::ArrayXd&
getLambda()
const {
return lambda; }
140 const std::vector<double>&
getPrimals()
const {
return primals; }
145 const std::vector<double>&
getDuals()
const {
return duals; }
150 const std::vector<double>&
getTime()
const {
return time; }
173 std::vector<double> gaps(primals.size());
174 for (
size_t i = 0; i < primals.size(); i++) {
175 gaps[i] = primals[i] - duals[i];
189 Eigen::MatrixXd
predict(T& x,
const std::string& type =
"response")
const
194 int m = coefs.cols();
196 std::unique_ptr<Loss> loss =
setupLoss(this->loss_type);
198 Eigen::VectorXd x_centers;
199 Eigen::VectorXd x_scales;
201 x, x_centers, x_scales, this->centering_type, this->scaling_type,
false);
203 Eigen::MatrixXd eta = Eigen::MatrixXd::Zero(n, m);
205 for (
int k = 0; k < m; ++k) {
206 for (
typename Eigen::SparseMatrix<double>::InnerIterator it(coefs, k); it;
209 eta.col(k) += x.col(j) * (it.value() / x_scales(j));
210 eta.col(k).array() -= it.value() * x_centers(j) / x_scales(j);
213 eta.col(k).array() += intercepts(k);
216 if (type ==
"linear") {
221 return loss->predict(eta);
A class representing the results of SLOPE (Sorted L1 Penalized Estimation) fitting.
const std::vector< std::vector< int > > & getClusters() const
Gets the clusters.
const Eigen::SparseMatrix< double > & getCoefs() const
Gets the sparse coefficient matrix for this fit.
SlopeFit(const Eigen::VectorXd &intercepts, const Eigen::SparseMatrix< double > &coefs, const std::vector< std::vector< int > > &clusters, const double alpha, const Eigen::ArrayXd &lambda, const double deviance, const double null_deviance, const std::vector< double > &primals, const std::vector< double > &duals, const std::vector< double > &time, const int passes, const std::string ¢ering_type, const std::string &scaling_type)
Construct a new Slope Fit object.
const Eigen::ArrayXd & getLambda() const
Gets the lambda (regularization) parameter used.
const Eigen::VectorXd & getIntercepts() const
Gets the intercept terms for this SLOPE fit.
double getAlpha() const
Gets the alpha (mixing) parameter used.
const std::vector< double > & getPrimals() const
Gets the sequence of primal objective values during optimization.
SlopeFit()=default
Default constructor.
const std::vector< double > & getDuals() const
Gets the sequence of dual objective values during optimization.
const std::vector< double > & getTime() const
Gets the sequence of computation times during optimization.
std::vector< double > getGaps() const
Calculate the duality gaps during optimization.
Eigen::MatrixXd predict(T &x, const std::string &type="response") const
Predict the response for a given input matrix.
const std::string & getLossType() const
Gets the model's loss type.
double getDevianceRatio() const
Calculate the deviance ratio (1 - deviance/null_deviance)
double getNullDeviance() const
Gets the null model deviance.
double getDeviance() const
Gets the model deviance.
int getPasses() const
Gets the total number of optimization iterations.
Namespace containing SLOPE regression implementation.
std::unique_ptr< Loss > setupLoss(const std::string &loss)
Factory function to create the appropriate loss function based on the distribution family.
void validateOption(const std::string &value, const std::set< std::string > &valid_options, const std::string ¶meter_name)
Validates if a given value exists in a set of valid options.
JitNormalization normalize(Eigen::MatrixXd &x, Eigen::VectorXd &x_centers, Eigen::VectorXd &x_scales, const std::string ¢ering_type, const std::string &scaling_type, const bool modify_x)
Functions to normalize the design matrix and rescale coefficients in case the design was normalized.
Factory function to create the appropriate loss function based on.
Various utility functions.