slope 0.29.0
Loading...
Searching...
No Matches
slope::SlopeFit Class Reference

A class representing the results of SLOPE (Sorted L1 Penalized Estimation) fitting. More...

#include <slope_fit.h>

Public Member Functions

 SlopeFit (const Eigen::VectorXd &intercepts, const Eigen::SparseMatrix< double > &coefs, const Clusters &clusters, const double alpha, const Eigen::ArrayXd &lambda, const double deviance, const double null_deviance, const std::vector< double > &primals, const std::vector< double > &duals, const std::vector< double > &time, const int passes, const std::string &centering_type, const std::string &scaling_type)
 Construct a new Slope Fit object.
 
const Eigen::VectorXd & getIntercepts () const
 Gets the intercept terms for this SLOPE fit.
 
const Eigen::SparseMatrix< double > & getCoefs () const
 Gets the sparse coefficient matrix for this fit.
 
const ClustersgetClusters () const
 Gets the clusters.
 
const Eigen::ArrayXd & getLambda () const
 Gets the lambda (regularization) parameter used.
 
double getAlpha () const
 Gets the alpha (mixing) parameter used.
 
double getDeviance () const
 Gets the model deviance.
 
const std::string & getLossType () const
 Gets the model's loss type.
 
double getNullDeviance () const
 Gets the null model deviance.
 
const std::vector< double > & getPrimals () const
 Gets the sequence of primal objective values during optimization.
 
const std::vector< double > & getDuals () const
 Gets the sequence of dual objective values during optimization.
 
const std::vector< double > & getTime () const
 Gets the sequence of computation times during optimization.
 
int getPasses () const
 Gets the total number of optimization iterations.
 
double getDevianceRatio () const
 Calculate the deviance ratio (1 - deviance/null_deviance)
 
std::vector< double > getGaps () const
 Calculate the duality gaps during optimization.
 
template<typename T >
Eigen::MatrixXd predict (T &x, const std::string &type="response") const
 Predict the response for a given input matrix.
 

Detailed Description

A class representing the results of SLOPE (Sorted L1 Penalized Estimation) fitting.

This class stores the results of a SLOPE regression, including coefficients, intercepts, clusters (if required), regularization parameters, and optimization metrics.

Definition at line 26 of file slope_fit.h.

Constructor & Destructor Documentation

◆ SlopeFit()

slope::SlopeFit::SlopeFit ( const Eigen::VectorXd &  intercepts,
const Eigen::SparseMatrix< double > &  coefs,
const Clusters clusters,
const double  alpha,
const Eigen::ArrayXd &  lambda,
const double  deviance,
const double  null_deviance,
const std::vector< double > &  primals,
const std::vector< double > &  duals,
const std::vector< double > &  time,
const int  passes,
const std::string &  centering_type,
const std::string &  scaling_type 
)
inline

Construct a new Slope Fit object.

Parameters
interceptsVector of intercept terms
coefsMatrix of fitted coefficients
clustersClusters of coefficients
alphaMixing parameter between L1 and SLOPE norms
lambdaSequence of decreasing weights
devianceFinal model deviance
null_devianceNull model deviance
primalsHistory of primal objectives
dualsHistory of dual objectives
timeVector of optimization timestamps
passesNumber of optimization passes
centering_typeType of centering for the design matrix
scaling_typeType of scaling for the design matrix

Definition at line 67 of file slope_fit.h.

Member Function Documentation

◆ getAlpha()

double slope::SlopeFit::getAlpha ( ) const
inline

Gets the alpha (mixing) parameter used.

Definition at line 119 of file slope_fit.h.

◆ getClusters()

const Clusters & slope::SlopeFit::getClusters ( ) const
inline

Gets the clusters.

Definition at line 109 of file slope_fit.h.

◆ getCoefs()

const Eigen::SparseMatrix< double > & slope::SlopeFit::getCoefs ( ) const
inline

Gets the sparse coefficient matrix for this fit.

Definition at line 104 of file slope_fit.h.

◆ getDeviance()

double slope::SlopeFit::getDeviance ( ) const
inline

Gets the model deviance.

Definition at line 124 of file slope_fit.h.

◆ getDevianceRatio()

double slope::SlopeFit::getDevianceRatio ( ) const
inline

Calculate the deviance ratio (1 - deviance/null_deviance)

Returns
double The deviance ratio, a measure of model fit (higher is better)

Definition at line 162 of file slope_fit.h.

◆ getDuals()

const std::vector< double > & slope::SlopeFit::getDuals ( ) const
inline

Gets the sequence of dual objective values during optimization.

Definition at line 144 of file slope_fit.h.

◆ getGaps()

std::vector< double > slope::SlopeFit::getGaps ( ) const
inline

Calculate the duality gaps during optimization.

Returns
std::vector<double> Vector of duality gaps (primal - dual objectives)

Definition at line 170 of file slope_fit.h.

◆ getIntercepts()

const Eigen::VectorXd & slope::SlopeFit::getIntercepts ( ) const
inline

Gets the intercept terms for this SLOPE fit.

Definition at line 99 of file slope_fit.h.

◆ getLambda()

const Eigen::ArrayXd & slope::SlopeFit::getLambda ( ) const
inline

Gets the lambda (regularization) parameter used.

Definition at line 114 of file slope_fit.h.

◆ getLossType()

const std::string & slope::SlopeFit::getLossType ( ) const
inline

Gets the model's loss type.

Definition at line 129 of file slope_fit.h.

◆ getNullDeviance()

double slope::SlopeFit::getNullDeviance ( ) const
inline

Gets the null model deviance.

Definition at line 134 of file slope_fit.h.

◆ getPasses()

int slope::SlopeFit::getPasses ( ) const
inline

Gets the total number of optimization iterations.

Definition at line 154 of file slope_fit.h.

◆ getPrimals()

const std::vector< double > & slope::SlopeFit::getPrimals ( ) const
inline

Gets the sequence of primal objective values during optimization.

Definition at line 139 of file slope_fit.h.

◆ getTime()

const std::vector< double > & slope::SlopeFit::getTime ( ) const
inline

Gets the sequence of computation times during optimization.

Definition at line 149 of file slope_fit.h.

◆ predict()

template<typename T >
Eigen::MatrixXd slope::SlopeFit::predict ( T &  x,
const std::string &  type = "response" 
) const
inline

Predict the response for a given input matrix.

Template Parameters
TType of input matrix (dense or sparse)
Parameters
xInput matrix of features
typeType of prediction to return ("response" or "linear")
Returns
Matrix of predicted responses
See also
Loss

Definition at line 188 of file slope_fit.h.


The documentation for this class was generated from the following file: