![]() |
slope 0.29.0
|
Proximal Gradient Descent solver for SLOPE optimization. More...
#include <pgd.h>
Public Member Functions | |
PGD (JitNormalization jit_normalization, bool intercept, const std::string &update_type) | |
Constructs Proximal Gradient Descent solver for SLOPE optimization. | |
void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y) override |
Pure virtual function defining the solver's optimization routine. | |
void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y) override |
Pure virtual function defining the solver's optimization routine. | |
![]() | |
SolverBase (JitNormalization jit_normalization, bool intercept) | |
Constructs a base solver for SLOPE optimization. | |
virtual | ~SolverBase ()=default |
Default desstructor. | |
Additional Inherited Members | |
![]() | |
JitNormalization | jit_normalization |
JIT feature normalization strategy. | |
bool | intercept |
If true, fits intercept term. | |
Proximal Gradient Descent solver for SLOPE optimization.
This solver implements the proximal gradient descent algorithm with line search for solving the SLOPE optimization problem. It uses backtracking line search to automatically adjust the learning rate for optimal convergence.
|
inline |
|
overridevirtual |
Pure virtual function defining the solver's optimization routine.
beta0 | Intercept terms for each response |
beta | Coefficients (size p x m) |
eta | Linear predictor matrix (n samples x m responses) |
lambda | Vector of regularization parameters |
loss | Pointer to loss function object |
penalty | Sorted L1 norm object for proximal operations |
gradient | Gradient matrix for loss function |
working_set | Vector of indices for active predictors |
x | Input feature matrix (n samples x p predictors) |
x_centers | Vector of feature means for centering |
x_scales | Vector of feature scales for normalization |
y | Response matrix (n samples x m responses) |
Implements slope::SolverBase.
|
overridevirtual |
Pure virtual function defining the solver's optimization routine.
beta0 | Intercept terms for each response |
beta | Coefficients (size p x m) |
eta | Linear predictor matrix (n samples x m responses) |
lambda | Vector of regularization parameters |
loss | Pointer to loss function object |
penalty | Sorted L1 norm object for proximal operations |
gradient | Gradient matrix for loss function |
working_set | Vector of indices for active predictors |
x | Input feature matrix (n samples x p predictors) |
x_centers | Vector of feature means for centering |
x_scales | Vector of feature scales for normalization |
y | Response matrix (n samples x m responses) |
Implements slope::SolverBase.