![]() |
slope 6.2.1
|
Abstract base class for SLOPE optimization solvers. More...
#include <solver.h>

Public Member Functions | |
| SolverBase (JitNormalization jit_normalization, bool intercept) | |
| Constructs a base solver for SLOPE optimization. | |
| virtual | ~SolverBase ()=default |
| Default destructor. | |
| virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
| Pure virtual function defining the solver's optimization routine. | |
| virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
| Pure virtual function defining the solver's optimization routine. | |
| virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::Map< Eigen::MatrixXd > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
| Pure virtual function defining the solver's optimization routine. | |
| virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::Map< Eigen::SparseMatrix< double > > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
| Pure virtual function defining the solver's optimization routine. | |
Protected Attributes | |
| JitNormalization | jit_normalization |
| JIT feature normalization strategy. | |
| bool | intercept |
| If true, fits intercept term. | |
Abstract base class for SLOPE optimization solvers.
Provides the interface and common functionality for different SLOPE (Sorted L-One Penalized Estimation) optimization algorithms. Derived classes implement specific optimization strategies like coordinate descent or proximal gradient descent.
|
inline |
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
| beta0 | Intercept terms for each response |
| beta | Coefficient vecttor (size p x m) |
| eta | Linear predictor matrix (n samples x m responses) |
| lambda | Vector of regularization parameters |
| loss | Pointer to loss function object |
| penalty | Sorted L1 norm object for proximal operations |
| gradient | Gradient matrix for loss function |
| working_set | Vector of indices for active predictors |
| x | Input feature matrix (n samples x p predictors) |
| x_centers | Vector of feature means for centering |
| x_scales | Vector of feature scales for normalization |
| y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
| beta0 | Intercept terms for each response |
| beta | Coefficient vecttor (size p x m) |
| eta | Linear predictor matrix (n samples x m responses) |
| lambda | Vector of regularization parameters |
| loss | Pointer to loss function object |
| penalty | Sorted L1 norm object for proximal operations |
| gradient | Gradient matrix for loss function |
| working_set | Vector of indices for active predictors |
| x | Input feature matrix (n samples x p predictors) |
| x_centers | Vector of feature means for centering |
| x_scales | Vector of feature scales for normalization |
| y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
| beta0 | Intercept terms for each response |
| beta | Coefficients (size p x m) |
| eta | Linear predictor matrix (n samples x m responses) |
| lambda | Vector of regularization parameters |
| loss | Pointer to loss function object |
| penalty | Sorted L1 norm object for proximal operations |
| gradient | Gradient matrix for loss function |
| working_set | Vector of indices for active predictors |
| x | Input feature matrix (n samples x p predictors) |
| x_centers | Vector of feature means for centering |
| x_scales | Vector of feature scales for normalization |
| y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
| beta0 | Intercept terms for each response |
| beta | Coefficient vecttor (size p x m) |
| eta | Linear predictor matrix (n samples x m responses) |
| lambda | Vector of regularization parameters |
| loss | Pointer to loss function object |
| penalty | Sorted L1 norm object for proximal operations |
| gradient | Gradient matrix for loss function |
| working_set | Vector of indices for active predictors |
| x | Input feature matrix (n samples x p predictors) |
| x_centers | Vector of feature means for centering |
| x_scales | Vector of feature scales for normalization |
| y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
protected |
|
protected |