![]() |
slope 0.29.0
|
Abstract base class for SLOPE optimization solvers. More...
#include <solver.h>
Public Member Functions | |
SolverBase (JitNormalization jit_normalization, bool intercept) | |
Constructs a base solver for SLOPE optimization. | |
virtual | ~SolverBase ()=default |
Default desstructor. | |
virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
Pure virtual function defining the solver's optimization routine. | |
virtual void | run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0 |
Pure virtual function defining the solver's optimization routine. | |
Protected Attributes | |
JitNormalization | jit_normalization |
JIT feature normalization strategy. | |
bool | intercept |
If true, fits intercept term. | |
Abstract base class for SLOPE optimization solvers.
Provides the interface and common functionality for different SLOPE (Sorted L-One Penalized Estimation) optimization algorithms. Derived classes implement specific optimization strategies like coordinate descent or proximal gradient descent.
|
inline |
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
beta0 | Intercept terms for each response |
beta | Coefficients (size p x m) |
eta | Linear predictor matrix (n samples x m responses) |
lambda | Vector of regularization parameters |
loss | Pointer to loss function object |
penalty | Sorted L1 norm object for proximal operations |
gradient | Gradient matrix for loss function |
working_set | Vector of indices for active predictors |
x | Input feature matrix (n samples x p predictors) |
x_centers | Vector of feature means for centering |
x_scales | Vector of feature scales for normalization |
y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
pure virtual |
Pure virtual function defining the solver's optimization routine.
beta0 | Intercept terms for each response |
beta | Coefficient vecttor (size p x m) |
eta | Linear predictor matrix (n samples x m responses) |
lambda | Vector of regularization parameters |
loss | Pointer to loss function object |
penalty | Sorted L1 norm object for proximal operations |
gradient | Gradient matrix for loss function |
working_set | Vector of indices for active predictors |
x | Input feature matrix (n samples x p predictors) |
x_centers | Vector of feature means for centering |
x_scales | Vector of feature scales for normalization |
y | Response matrix (n samples x m responses) |
Implemented in slope::Hybrid, and slope::PGD.
|
protected |
|
protected |