slope 0.29.0
Loading...
Searching...
No Matches
slope::SolverBase Class Referenceabstract

Abstract base class for SLOPE optimization solvers. More...

#include <solver.h>

Inheritance diagram for slope::SolverBase:

Public Member Functions

 SolverBase (JitNormalization jit_normalization, bool intercept)
 Constructs a base solver for SLOPE optimization.
 
virtual ~SolverBase ()=default
 Default desstructor.
 
virtual void run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::MatrixXd &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0
 Pure virtual function defining the solver's optimization routine.
 
virtual void run (Eigen::VectorXd &beta0, Eigen::VectorXd &beta, Eigen::MatrixXd &eta, const Eigen::ArrayXd &lambda, const std::unique_ptr< Loss > &loss, const SortedL1Norm &penalty, const Eigen::VectorXd &gradient, const std::vector< int > &working_set, const Eigen::SparseMatrix< double > &x, const Eigen::VectorXd &x_centers, const Eigen::VectorXd &x_scales, const Eigen::MatrixXd &y)=0
 Pure virtual function defining the solver's optimization routine.
 

Protected Attributes

JitNormalization jit_normalization
 JIT feature normalization strategy.
 
bool intercept
 If true, fits intercept term.
 

Detailed Description

Abstract base class for SLOPE optimization solvers.

Provides the interface and common functionality for different SLOPE (Sorted L-One Penalized Estimation) optimization algorithms. Derived classes implement specific optimization strategies like coordinate descent or proximal gradient descent.

See also
slope::PGD
slope::CD

Definition at line 29 of file solver.h.

Constructor & Destructor Documentation

◆ SolverBase()

slope::SolverBase::SolverBase ( JitNormalization  jit_normalization,
bool  intercept 
)
inline

Constructs a base solver for SLOPE optimization.

Parameters
jit_normalizationType of just-in-time normalization to apply (None, Center, Scale, or Both)
interceptWhether to fit an intercept term

Definition at line 39 of file solver.h.

Member Function Documentation

◆ run() [1/2]

virtual void slope::SolverBase::run ( Eigen::VectorXd &  beta0,
Eigen::VectorXd &  beta,
Eigen::MatrixXd &  eta,
const Eigen::ArrayXd &  lambda,
const std::unique_ptr< Loss > &  loss,
const SortedL1Norm penalty,
const Eigen::VectorXd &  gradient,
const std::vector< int > &  working_set,
const Eigen::MatrixXd &  x,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
const Eigen::MatrixXd &  y 
)
pure virtual

Pure virtual function defining the solver's optimization routine.

Parameters
beta0Intercept terms for each response
betaCoefficients (size p x m)
etaLinear predictor matrix (n samples x m responses)
lambdaVector of regularization parameters
lossPointer to loss function object
penaltySorted L1 norm object for proximal operations
gradientGradient matrix for loss function
working_setVector of indices for active predictors
xInput feature matrix (n samples x p predictors)
x_centersVector of feature means for centering
x_scalesVector of feature scales for normalization
yResponse matrix (n samples x m responses)

Implemented in slope::Hybrid, and slope::PGD.

◆ run() [2/2]

virtual void slope::SolverBase::run ( Eigen::VectorXd &  beta0,
Eigen::VectorXd &  beta,
Eigen::MatrixXd &  eta,
const Eigen::ArrayXd &  lambda,
const std::unique_ptr< Loss > &  loss,
const SortedL1Norm penalty,
const Eigen::VectorXd &  gradient,
const std::vector< int > &  working_set,
const Eigen::SparseMatrix< double > &  x,
const Eigen::VectorXd &  x_centers,
const Eigen::VectorXd &  x_scales,
const Eigen::MatrixXd &  y 
)
pure virtual

Pure virtual function defining the solver's optimization routine.

Parameters
beta0Intercept terms for each response
betaCoefficient vecttor (size p x m)
etaLinear predictor matrix (n samples x m responses)
lambdaVector of regularization parameters
lossPointer to loss function object
penaltySorted L1 norm object for proximal operations
gradientGradient matrix for loss function
working_setVector of indices for active predictors
xInput feature matrix (n samples x p predictors)
x_centersVector of feature means for centering
x_scalesVector of feature scales for normalization
yResponse matrix (n samples x m responses)

Implemented in slope::Hybrid, and slope::PGD.

Member Data Documentation

◆ intercept

bool slope::SolverBase::intercept
protected

If true, fits intercept term.

Definition at line 108 of file solver.h.

◆ jit_normalization

JitNormalization slope::SolverBase::jit_normalization
protected

JIT feature normalization strategy.

Definition at line 107 of file solver.h.


The documentation for this class was generated from the following file: