![]() |
slope 0.29.0
|
Implementation of the Quadratic loss function. More...
#include <quadratic.h>
Public Member Functions | |
double | loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Calculates the quadratic (least-squares) loss. | |
double | dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w) |
Computes the dual function for the quadratic loss. | |
Eigen::MatrixXd | residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Calculates residuals for the quadratic model. | |
Eigen::MatrixXd | preprocessResponse (const Eigen::MatrixXd &y) |
Preprocesses the response for the quadratic model. | |
void | updateWeightsAndWorkingResponse (Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y) |
Updates weights and working response for IRLS algorithm. | |
Eigen::MatrixXd | link (const Eigen::MatrixXd &mu) |
The link function. | |
Eigen::MatrixXd | inverseLink (const Eigen::MatrixXd &eta) |
The link function, also known as the mean function. | |
Eigen::MatrixXd | predict (const Eigen::MatrixXd &eta) |
Return predicted response, which is the same as the linear predictor. | |
![]() | |
virtual | ~Loss ()=default |
Destructor for the Loss class. | |
virtual void | updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Updates the intercept with a gradient descent update. Also updates the linear predictor (but not the residual). | |
virtual double | deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model. | |
Additional Inherited Members | |
![]() | |
Loss (double lipschitz_constant) | |
Constructs an loss function with specified Lipschitz constant. | |
Implementation of the Quadratic loss function.
The Quadratic class provides methods for computing loss, dual function, residuals, and weight updates for the Quadratic case in the SLOPE algorithm. It is particularly suited for regression problems where the error terms are assumed to follow a normal distribution.
Definition at line 27 of file quadratic.h.
|
inlineexplicit |
Definition at line 30 of file quadratic.h.
|
virtual |
Computes the dual function for the quadratic loss.
Calculates the Fenchel conjugate of the quadratic loss function
theta | Dual variables vector (n x 1) |
y | Observed values vector (n x 1) |
w | Observation weights vector (n x 1) |
Implements slope::Loss.
Definition at line 12 of file quadratic.cpp.
|
virtual |
The link function, also known as the mean function.
eta | Linear predictor. |
Implements slope::Loss.
Definition at line 50 of file quadratic.cpp.
|
virtual |
The link function.
mu | Mean. |
Implements slope::Loss.
Definition at line 44 of file quadratic.cpp.
|
virtual |
Calculates the quadratic (least-squares) loss.
Computes the squared error loss between predicted and actual values, normalized by twice the number of observations.
eta | Vector of predicted values (n x 1) |
y | Matrix of actual values (n x 1) |
Implements slope::Loss.
Definition at line 6 of file quadratic.cpp.
|
virtual |
Return predicted response, which is the same as the linear predictor.
eta | The linear predictor |
Implements slope::Loss.
Definition at line 56 of file quadratic.cpp.
|
virtual |
Preprocesses the response for the quadratic model.
Doesn't perform any transformation on the response.
y | Responnse vector (n x 1) |
Implements slope::Loss.
Definition at line 28 of file quadratic.cpp.
|
virtual |
Calculates residuals for the quadratic model.
Computes the difference between observed and predicted values
eta | Predicted values vector (n x 1) |
y | Actual values vector (n x 1) |
Implements slope::Loss.
Definition at line 22 of file quadratic.cpp.
|
virtual |
Updates weights and working response for IRLS algorithm.
For quadratic case, weights are set to 1 and working response equals the original response. This implementation is particularly simple compared to other GLM families.
[out] | w | Weights vector to be updated (n x 1) |
[out] | z | Working response vector to be updated (n x 1) |
[in] | eta | Current predictions vector (n x 1) |
[in] | y | Matrix of observed values (n x 1) |
Implements slope::Loss.
Definition at line 34 of file quadratic.cpp.