15#include <Eigen/SparseCore>
33 std::vector<SlopeFit> fits;
60 assert(step < fits.size());
76 std::vector<Eigen::VectorXd> intercepts;
78 for (
const auto& fit : fits) {
79 intercepts.emplace_back(fit.getIntercepts());
95 std::vector<Eigen::SparseMatrix<double>>
getCoefs()
const
97 std::vector<Eigen::SparseMatrix<double>> coefs;
99 for (
const auto& fit : fits) {
100 coefs.emplace_back(fit.getCoefs());
117 std::vector<std::vector<std::vector<int>>> clusters;
119 for (
const auto& fit : fits) {
120 clusters.emplace_back(fit.getClusters());
135 Eigen::SparseMatrix<double>
getCoefs(
const std::size_t i)
const
137 assert(i < fits.size() &&
"Index out of bounds");
139 return fits[i].getCoefs();
148 Eigen::ArrayXd alphas(fits.size());
150 for (
size_t i = 0; i < fits.size(); i++) {
151 alphas(i) = fits[i].getAlpha();
160 const Eigen::ArrayXd&
getLambda()
const {
return fits.front().getLambda(); }
167 std::vector<double> deviances;
169 for (
const auto& fit : fits) {
170 deviances.emplace_back(fit.getDeviance());
186 std::vector<std::vector<double>> primals;
188 for (
const auto& fit : fits) {
189 primals.emplace_back(fit.getPrimals());
200 std::vector<std::vector<double>> duals;
202 for (
const auto& fit : fits) {
203 duals.emplace_back(fit.getDuals());
212 std::vector<std::vector<double>>
getTime()
const
214 std::vector<std::vector<double>> time;
216 for (
const auto& fit : fits) {
217 time.emplace_back(fit.getTime());
228 std::vector<int> passes;
230 for (
const auto& fit : fits) {
231 passes.emplace_back(fit.getPasses());
244 std::vector<double> ratios;
246 for (
const auto& fit : fits) {
247 ratios.emplace_back(fit.getDevianceRatio());
258 std::vector<std::vector<double>>
getGaps()
const
260 std::vector<std::vector<double>> gaps;
262 for (
const auto& fit : fits) {
263 gaps.emplace_back(fit.getGaps());
A class representing the results of SLOPE (Sorted L1 Penalized Estimation) fitting.
Container class for SLOPE regression solution paths.
std::vector< double > getDeviance() const
Gets the deviance values for each solution.
std::vector< std::vector< double > > getGaps() const
Computes the duality gaps (primal - dual objectives) for each solution.
const SlopeFit & operator()(const size_t step)
Get one of the coefficients along the path.
std::vector< std::vector< double > > getDuals() const
Gets the dual objective values during optimization.
std::vector< int > getPasses() const
Gets the number of iterations for each solution.
std::vector< std::vector< double > > getPrimals() const
Gets the primal objective values during optimization.
std::vector< std::vector< double > > getTime() const
Gets the computation times for each solution.
const std::vector< double > getDevianceRatios() const
Computes the deviance ratio (explained deviance) for each solution.
SlopePath()=default
Constructs an empty SlopePath object.
std::vector< Eigen::VectorXd > getIntercepts() const
Returns the vector of intercept terms for each solution in the path.
const Eigen::ArrayXd & getLambda() const
Gets the lambda (regularization) weights.
Eigen::SparseMatrix< double > getCoefs(const std::size_t i) const
Gets the sparse coefficient matrix for a specific solution in the path.
Eigen::ArrayXd getAlpha() const
Gets the alpha parameter sequence.
std::vector< Eigen::SparseMatrix< double > > getCoefs() const
Returns the vector of coefficient matrices for each solution in the path.
SlopePath(const std::vector< SlopeFit > &fits)
Constructs a SlopePath object containing SLOPE regression solution path data.
double getNullDeviance() const
Gets the null model deviance.
std::vector< std::vector< std::vector< int > > > getClusters() const
Returns the clusters for each solution in the path.
Namespace containing SLOPE regression implementation.
SLOPE (Sorted L-One Penalized Estimation) fitting results.