![]() |
slope 0.29.0
|
The Poisson class represents a Poisson regression loss function. More...
#include <poisson.h>
Public Member Functions | |
double | loss (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) override |
Calculates the negative log-likelihood loss for the Poisson regression. | |
double | dual (const Eigen::MatrixXd &theta, const Eigen::MatrixXd &y, const Eigen::VectorXd &w) override |
Calculates the Fenchel conjugate (dual) of the Poisson loss. | |
Eigen::MatrixXd | residual (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) override |
Calculates the residual (negative gradient) for the Poisson regression. | |
void | updateWeightsAndWorkingResponse (Eigen::VectorXd &w, Eigen::VectorXd &z, const Eigen::VectorXd &eta, const Eigen::VectorXd &y) override |
Updates the weights and working response for IRLS (Iteratively Reweighted Least Squares). | |
Eigen::MatrixXd | preprocessResponse (const Eigen::MatrixXd &y) override |
Preprocesses the response for the Poisson model. | |
void | updateIntercept (Eigen::VectorXd &beta0, const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) override |
Updates the intercept with a gradient descent update. Unlike the Quadratic and Logistic cases, the Poisson regression intercept update is not quite as simple since the gradient is not Lipschitz continuous. Instead we use a backtracking line search here. | |
Eigen::MatrixXd | link (const Eigen::MatrixXd &mu) override |
The link function. | |
Eigen::MatrixXd | inverseLink (const Eigen::MatrixXd &eta) override |
The inverse link function, also known as the mean function. | |
Eigen::MatrixXd | predict (const Eigen::MatrixXd &eta) override |
Return predicted response, that is 0 or 1 depending on the predicted probabilities. | |
![]() | |
virtual | ~Loss ()=default |
Destructor for the Loss class. | |
virtual double | deviance (const Eigen::MatrixXd &eta, const Eigen::MatrixXd &y) |
Computes deviance, which is 2 times the difference between the loglikelihood of the model and the loglikelihood of the null (intercept-only) model. | |
Additional Inherited Members | |
![]() | |
Loss (double lipschitz_constant) | |
Constructs an loss function with specified Lipschitz constant. | |
The Poisson class represents a Poisson regression loss function.
The Poisson regression loss function is used for modeling count data. It assumes the response variable follows a Poisson distribution. The log-likelihood for a single observation is:
\[ \ell(y_i|\eta_i) = y_i\eta_i - e^{\eta_i} - \log(y_i!) \]
where \(\eta_i\) is the linear predictor and \(y_i\) is the observed count.
|
overridevirtual |
Calculates the Fenchel conjugate (dual) of the Poisson loss.
theta | The dual variables |
y | The observed counts vector |
w | The weights vector |
Implements slope::Loss.
Definition at line 13 of file poisson.cpp.
|
overridevirtual |
The inverse link function, also known as the mean function.
eta | Linear predictor |
Implements slope::Loss.
Definition at line 69 of file poisson.cpp.
|
overridevirtual |
The link function.
mu | Mean. |
Implements slope::Loss.
Definition at line 63 of file poisson.cpp.
|
overridevirtual |
Calculates the negative log-likelihood loss for the Poisson regression.
eta | The linear predictor vector \(\eta\) |
y | The observed counts vector \(y\) |
Implements slope::Loss.
Definition at line 7 of file poisson.cpp.
|
overridevirtual |
Return predicted response, that is 0 or 1 depending on the predicted probabilities.
eta | The linear predictor |
Implements slope::Loss.
Definition at line 75 of file poisson.cpp.
|
overridevirtual |
Preprocesses the response for the Poisson model.
Checks if the response is non-negative and throws an error otherwise.
y | Predicted values vector (n x 1) |
Implements slope::Loss.
Definition at line 41 of file poisson.cpp.
|
overridevirtual |
Calculates the residual (negative gradient) for the Poisson regression.
eta | The linear predictor vector \(\eta\) |
y | The observed counts vector \(y\) |
Implements slope::Loss.
Definition at line 25 of file poisson.cpp.
|
overridevirtual |
Updates the intercept with a gradient descent update. Unlike the Quadratic and Logistic cases, the Poisson regression intercept update is not quite as simple since the gradient is not Lipschitz continuous. Instead we use a backtracking line search here.
beta0 | The current intercept |
eta | The current linear predictor |
y | The observed counts vector |
Reimplemented from slope::Loss.
Definition at line 51 of file poisson.cpp.
|
overridevirtual |
Updates the weights and working response for IRLS (Iteratively Reweighted Least Squares).
w | The weights vector: \(w = e^{\eta}\) |
z | The working response vector: \(z = \eta + (y - e^{\eta})/e^{\eta}\) |
eta | The current linear predictor |
y | The observed counts vector |
Implements slope::Loss.
Definition at line 31 of file poisson.cpp.