![]() |
slope 0.28.0
|
The SLOPE model. More...
#include <slope.h>
Public Member Functions | |
Slope () | |
void | setSolver (const std::string &solver) |
Sets the numerical solver used to fit the model. | |
void | setIntercept (bool intercept) |
Sets the intercept flag. | |
void | setNormalization (const std::string &type) |
Sets normalization type for the design matrix. | |
void | setUpdateClusters (bool update_clusters) |
Sets the update clusters flag. | |
void | setReturnClusters (const bool return_clusters) |
Sets the update clusters flag. | |
void | setAlphaMinRatio (double alpha_min_ratio) |
Sets the alpha min ratio. | |
void | setAlphaType (const std::string &alpha_type) |
Sets the alpha type. | |
void | setLearningRateDecr (double learning_rate_decr) |
Sets the learning rate decrement. | |
void | setQ (double q) |
Sets the q value. | |
void | setOscarParameters (const double theta1, const double theta2) |
Sets OSCAR parameters. | |
void | setTol (double tol) |
Sets the tolerance value. | |
void | setMaxIterations (int max_it) |
Sets the maximum number of iterations. | |
void | setPathLength (int path_length) |
Sets the path length. | |
void | setHybridCdIterations (int cd_iterations) |
Sets the frequence of proximal gradient descent steps. | |
void | setLambdaType (const std::string &lambda_type) |
Sets the lambda type for regularization weights. | |
void | setLoss (const std::string &loss_type) |
Sets the loss function type. | |
void | setScreening (const std::string &screening_type) |
Sets the type of feature screening used, which discards predictors that are unlikely to be active. | |
void | setModifyX (const bool modify_x) |
Controls if x should be modified-in-place. | |
void | setDevChangeTol (const double dev_change_tol) |
Sets tolerance in deviance change for early stopping. | |
void | setDevRatioTol (const double dev_ratio_tol) |
Sets tolerance in deviance change for early stopping. | |
void | setMaxClusters (const int max_clusters) |
Sets tolerance in deviance change for early stopping. | |
void | setCentering (const std::string &type) |
Sets the center points for feature normalization. | |
void | setCentering (const Eigen::VectorXd &x_centers) |
Sets the center points for feature normalization. | |
void | setScaling (const std::string &type) |
Sets the scaling type. | |
void | setDiagnostics (const bool collect_diagnostics) |
Toggles collection of diagnostics. | |
void | setScaling (const Eigen::VectorXd &x_scales) |
Sets the scaling factors for feature normalization. | |
void | setAlphaEstimationMaxIterations (const int alpha_est_maxit) |
Sets the maximum number of iterations for the alpha estimation procedure. | |
int | getAlphaEstimationMaxIterations () const |
Gets the maximum number of iterations allowed for the alpha estimation procedure. | |
bool | getFitIntercept () const |
Returns the intercept flag. | |
const std::string & | getLossType () |
Get currently defined loss type. | |
template<typename T > | |
SlopePath | path (T &x, const Eigen::MatrixXd &y_in, Eigen::ArrayXd alpha=Eigen::ArrayXd::Zero(0), Eigen::ArrayXd lambda=Eigen::ArrayXd::Zero(0)) |
Computes SLOPE regression solution path for multiple alpha and lambda values. | |
template<typename T > | |
SlopeFit | fit (T &x, const Eigen::MatrixXd &y_in, const double alpha=1.0, Eigen::ArrayXd lambda=Eigen::ArrayXd::Zero(0)) |
Fits a single SLOPE regression model for given alpha and lambda values. | |
The SLOPE model.
This class implements the SLOPE algorithm for regularized regression problems. It supports different loss functions (quadratic, logistic, poisson) and provides functionality for fitting models with sorted L1 regularization along a path of regularization parameters.
|
inline |
SlopeFit slope::Slope::fit | ( | T & | x, |
const Eigen::MatrixXd & | y_in, | ||
const double | alpha = 1.0 , |
||
Eigen::ArrayXd | lambda = Eigen::ArrayXd::Zero(0) |
||
) |
Fits a single SLOPE regression model for given alpha and lambda values.
T | Matrix type for feature input (supports dense or sparse matrices) |
x | Feature matrix of size n x p |
y_in | Response matrix of size n x m |
alpha | Mixing parameter for elastic net regularization |
lambda | Vector of regularization parameters (if empty, computed automatically) |
Fits a single SLOPE model with specified regularization parameters, returning coefficients and optimization details in a SlopeFit object.
int slope::Slope::getAlphaEstimationMaxIterations | ( | ) | const |
bool slope::Slope::getFitIntercept | ( | ) | const |
const std::string & slope::Slope::getLossType | ( | ) |
SlopePath slope::Slope::path | ( | T & | x, |
const Eigen::MatrixXd & | y_in, | ||
Eigen::ArrayXd | alpha = Eigen::ArrayXd::Zero(0) , |
||
Eigen::ArrayXd | lambda = Eigen::ArrayXd::Zero(0) |
||
) |
Computes SLOPE regression solution path for multiple alpha and lambda values.
T | Matrix type for feature input (supports dense or sparse matrices) |
x | Feature matrix of size n x p |
y_in | Response matrix of size n x m |
alpha | Sequence of mixing parameters for elastic net regularization |
lambda | Sequence of regularization parameters (if empty, computed automatically) |
Fits SLOPE models for each combination of alpha and lambda values, storing all solutions and optimization metrics in a SlopePath object.
void slope::Slope::setAlphaEstimationMaxIterations | ( | const int | alpha_est_maxit | ) |
Sets the maximum number of iterations for the alpha estimation procedure.
The current stopping criterion for this solver is that the sets of selected features between two consecutive iterations is identical, but users have experienced instances where these sets will cycle back on forth between two sets, which would make the algorithm fail to converge.
alpha_est_maxit | The maximum number of allowed iterations |
void slope::Slope::setAlphaMinRatio | ( | double | alpha_min_ratio | ) |
void slope::Slope::setAlphaType | ( | const std::string & | alpha_type | ) |
Sets the alpha type.
If "path"
, values of "alpha"
are automatically selected to span a range from completele penalization to the almost-unpenalized case: the SLOPE path. If "estimate"
, which is only available for the quadratic loss, the alpha value is estimated by using the scaled L2 norm of the residuals vector from an OLS fit. In case the number of features exceeds the number of observations plus 30, then this is done iteratively starting at the null (or intercept-only) models, and proceeding by refitting slope with these estimations until the set of selected features no longer changes.
alpha_type | The type of alpha, one of "path" and "estimate" . |
void slope::Slope::setCentering | ( | const Eigen::VectorXd & | x_centers | ) |
void slope::Slope::setCentering | ( | const std::string & | type | ) |
void slope::Slope::setDevChangeTol | ( | const double | dev_change_tol | ) |
void slope::Slope::setDevRatioTol | ( | const double | dev_ratio_tol | ) |
void slope::Slope::setDiagnostics | ( | const bool | collect_diagnostics | ) |
void slope::Slope::setHybridCdIterations | ( | int | cd_iterations | ) |
void slope::Slope::setIntercept | ( | bool | intercept | ) |
void slope::Slope::setLambdaType | ( | const std::string & | lambda_type | ) |
void slope::Slope::setLearningRateDecr | ( | double | learning_rate_decr | ) |
void slope::Slope::setLoss | ( | const std::string & | loss_type | ) |
void slope::Slope::setMaxClusters | ( | const int | max_clusters | ) |
Sets tolerance in deviance change for early stopping.
max_clusters | The maximum number of clusters. SLOPE can (theoretically) select at most select min(n, p) clusters (unique non-zero betas). By default, this is set to -1, which means that the number of clusters will be automatically set to the number of observations + 1. |
void slope::Slope::setMaxIterations | ( | int | max_it | ) |
void slope::Slope::setModifyX | ( | const bool | modify_x | ) |
Controls if x
should be modified-in-place.
If true
, then x
will be modified in place if it is normalized. In case when x
is dense, it will be both centered and scaled. If x
is sparse, it will be only scaled.
modify_x | Whether to modfiy x in place or not |
void slope::Slope::setNormalization | ( | const std::string & | type | ) |
Sets normalization type for the design matrix.
type | Type of normalization: one of "standardization" or "none". |
void slope::Slope::setOscarParameters | ( | const double | theta1, |
const double | theta2 | ||
) |
void slope::Slope::setPathLength | ( | int | path_length | ) |
void slope::Slope::setQ | ( | double | q | ) |
void slope::Slope::setReturnClusters | ( | const bool | return_clusters | ) |
void slope::Slope::setScaling | ( | const Eigen::VectorXd & | x_scales | ) |
void slope::Slope::setScaling | ( | const std::string & | type | ) |
void slope::Slope::setScreening | ( | const std::string & | screening_type | ) |
void slope::Slope::setSolver | ( | const std::string & | solver | ) |
Sets the numerical solver used to fit the model.
solver | One of "auto", "pgd", "fista", or "hybrid". In the first case (the default), the solver is automatically selected based on availability of the hybrid solver, which currently means that the hybrid solver is used everywhere except for the multinomial loss. |
void slope::Slope::setTol | ( | double | tol | ) |
void slope::Slope::setUpdateClusters | ( | bool | update_clusters | ) |