30template<
typename MatrixType>
32estimateNoise(MatrixType& x, Eigen::MatrixXd& y,
const bool fit_intercept)
37 Eigen::VectorXd residuals;
46 y.array() -= y.mean();
51 auto [ols_intercept, ols_coefs] = fitOls(x, y, fit_intercept);
52 residuals = y - x * ols_coefs;
55 residuals.array() -= ols_intercept;
58 df = n - p -
static_cast<int>(fit_intercept) - 1;
63 return residuals.norm() / std::sqrt(df);
90template<
typename MatrixType>
103 std::vector<int> selected;
105 Eigen::ArrayXd alpha(1);
107 Slope model_copy = model;
116 result = model_copy.
path(x, y, alpha);
118 for (
int it = 0; it < alpha_est_maxit; ++it) {
120 MatrixType x_selected =
subsetCols(x, selected);
122 std::vector<int> selected_prev = selected;
129 result = model_copy.
path(x, y, alpha);
130 auto coefs = result.
getCoefs().back();
132 for (
typename Eigen::SparseMatrix<double>::InnerIterator it(coefs, 0); it;
134 selected.emplace_back(it.row());
137 if (selected == selected_prev) {
141 if (
static_cast<int>(selected.size()) >=
143 throw std::runtime_error(
144 "selected >= n - 1 variables, cannot estimate variance");
150 "Maximum iterations reached in alpha estimation");
Container class for SLOPE regression solution paths.
std::vector< Eigen::SparseMatrix< double > > getCoefs() const
Returns the vector of coefficient matrices for each solution in the path.
SlopePath path(T &x, const Eigen::MatrixXd &y_in, Eigen::ArrayXd alpha=Eigen::ArrayXd::Zero(0), Eigen::ArrayXd lambda=Eigen::ArrayXd::Zero(0))
Computes SLOPE regression solution path for multiple alpha and lambda values.
bool getFitIntercept() const
Returns the intercept flag.
int getAlphaEstimationMaxIterations() const
Gets the maximum number of iterations allowed for the alpha estimation procedure.
void setAlphaType(const std::string &alpha_type)
Sets the alpha type.
static void addWarning(WarningCode code, const std::string &message)
Log a new warning.
Thread-safe warning logging facility for the slope library.
Namespace containing SLOPE regression implementation.
Eigen::MatrixXd subsetCols(const Eigen::MatrixXd &x, const std::vector< int > &indices)
Extract specified columns from a dense matrix.
double estimateNoise(MatrixType &x, Eigen::MatrixXd &y, const bool fit_intercept)
Estimates noise (standard error) in a linear model using OLS residuals.
@ MAXIT_REACHED
Maximum iterations reached without convergence.
SlopePath estimateAlpha(MatrixType &x, Eigen::MatrixXd &y, const Slope &model)
Estimates the regularization parameter alpha for SLOPE regression.
Ordinary Least Squares (OLS) regression functionality.
SLOPE (Sorted L-One Penalized Estimation) optimization.
Various utility functions.