11#include <Eigen/SparseCore>
39 , update_clusters(false)
40 , collect_diagnostics(false)
41 , return_clusters(true)
43 , dev_change_tol(1e-5)
44 , dev_ratio_tol(0.999)
45 , learning_rate_decr(0.5)
48 , alpha_est_maxit(1000)
52 , max_clusters(std::optional<int>())
55 , centering_type(
"mean")
57 , loss_type(
"quadratic")
58 , screening_type(
"strong")
71 void setSolver(
const std::string& solver);
205 void setLoss(
const std::string& loss_type);
281 void setScaling(
const Eigen::VectorXd& x_scales);
330 const Eigen::MatrixXd& y_in,
331 Eigen::ArrayXd alpha = Eigen::ArrayXd::Zero(0),
332 Eigen::ArrayXd lambda = Eigen::ArrayXd::Zero(0));
351 const Eigen::MatrixXd& y_in,
352 const double alpha = 1.0,
353 Eigen::ArrayXd lambda = Eigen::ArrayXd::Zero(0));
359 bool update_clusters;
360 bool collect_diagnostics;
361 bool return_clusters;
362 double alpha_min_ratio;
363 double dev_change_tol;
364 double dev_ratio_tol;
365 double learning_rate_decr;
374 std::optional<int> max_clusters;
375 std::string alpha_type;
376 std::string lambda_type;
377 std::string centering_type;
378 std::string scaling_type;
379 std::string loss_type;
380 std::string screening_type;
381 std::string solver_type;
384 Eigen::VectorXd x_centers;
385 Eigen::VectorXd x_scales;
A class representing the results of SLOPE (Sorted L1 Penalized Estimation) fitting.
Container class for SLOPE regression solution paths.
void setSolver(const std::string &solver)
Sets the numerical solver used to fit the model.
void setAlphaMinRatio(double alpha_min_ratio)
Sets the alpha min ratio.
void setMaxIterations(int max_it)
Sets the maximum number of iterations.
void setAlphaEstimationMaxIterations(const int alpha_est_maxit)
Sets the maximum number of iterations for the alpha estimation procedure.
SlopePath path(T &x, const Eigen::MatrixXd &y_in, Eigen::ArrayXd alpha=Eigen::ArrayXd::Zero(0), Eigen::ArrayXd lambda=Eigen::ArrayXd::Zero(0))
Computes SLOPE regression solution path for multiple alpha and lambda values.
void setDevRatioTol(const double dev_ratio_tol)
Sets tolerance in deviance change for early stopping.
void setScaling(const std::string &type)
Sets the scaling type.
SlopeFit fit(T &x, const Eigen::MatrixXd &y_in, const double alpha=1.0, Eigen::ArrayXd lambda=Eigen::ArrayXd::Zero(0))
Fits a single SLOPE regression model for given alpha and lambda values.
void setDevChangeTol(const double dev_change_tol)
Sets tolerance in deviance change for early stopping.
const std::string & getLossType()
Get currently defined loss type.
void setReturnClusters(const bool return_clusters)
Sets the update clusters flag.
void setMaxClusters(const int max_clusters)
Sets tolerance in deviance change for early stopping.
void setIntercept(bool intercept)
Sets the intercept flag.
bool getFitIntercept() const
Returns the intercept flag.
void setDiagnostics(const bool collect_diagnostics)
Toggles collection of diagnostics.
void setNormalization(const std::string &type)
Sets normalization type for the design matrix.
int getAlphaEstimationMaxIterations() const
Gets the maximum number of iterations allowed for the alpha estimation procedure.
void setScreening(const std::string &screening_type)
Sets the type of feature screening used, which discards predictors that are unlikely to be active.
void setOscarParameters(const double theta1, const double theta2)
Sets OSCAR parameters.
void setLambdaType(const std::string &lambda_type)
Sets the lambda type for regularization weights.
void setAlphaType(const std::string &alpha_type)
Sets the alpha type.
void setModifyX(const bool modify_x)
Controls if x should be modified-in-place.
void setCentering(const std::string &type)
Sets the center points for feature normalization.
void setLearningRateDecr(double learning_rate_decr)
Sets the learning rate decrement.
void setLoss(const std::string &loss_type)
Sets the loss function type.
void setPathLength(int path_length)
Sets the path length.
void setHybridCdIterations(int cd_iterations)
Sets the frequence of proximal gradient descent steps.
void setTol(double tol)
Sets the tolerance value.
void setQ(double q)
Sets the q value.
void setUpdateClusters(bool update_clusters)
Sets the update clusters flag.
Namespace containing SLOPE regression implementation.
SLOPE (Sorted L-One Penalized Estimation) fitting results.
Defines the SlopePath class for storing and accessing SLOPE regression solution paths.