Predictions for sgdnet Models
# S3 method for sgdnet predict(object, newx = NULL, s = NULL, type, exact = FALSE, newoffset = NULL, ...) # S3 method for sgdnet_gaussian predict(object, newx = NULL, s = NULL, type = c("link", "response", "coefficients", "nonzero"), exact = FALSE, newoffset = NULL, ...) # S3 method for sgdnet_binomial predict(object, newx = NULL, s = NULL, type = c("link", "response", "coefficients", "nonzero", "class"), exact = FALSE, newoffset = NULL, ...) # S3 method for sgdnet_multinomial predict(object, newx = NULL, s = NULL, type = c("link", "response", "coefficients", "nonzero", "class"), exact = FALSE, newoffset = NULL, ...) # S3 method for sgdnet_mgaussian predict(object, newx = NULL, s = NULL, type = c("link", "response", "coefficients", "nonzero"), exact = FALSE, newoffset = NULL, ...)
object | an object of class |
---|---|
newx | new data to predict on. Must be provided if |
s | the lambda penalty value on which to base the predictions. |
type | type of prediction to return, one of
|
exact | if the given value of |
newoffset | if an offset was used in the call to |
... | arguments to be passed on to |
Predictions for object
given data in newx
.
# Gaussian # Split into training and test sets n <- length(abalone$y) train_ind <- sample(n, size = floor(0.8 * n)) # Fit the model using the training set fit_gaussian <- sgdnet(abalone$x[train_ind, ], abalone$y[train_ind]) # Predict using the test set pred_gaussian <- predict(fit_gaussian, newx = abalone$x[-train_ind, ]) # Mean absolute prediction error along regularization path mae <- 1/(n - length(train_ind)) * colSums(abs(abalone$y[-train_ind] - pred_gaussian)) # Binomial n <- length(heart$y) train_ind <- sample(n, size = floor(0.8 * n)) fit_binomial <- sgdnet(heart$x[train_ind, ], heart$y[train_ind], family = "binomial") # Predict classes at custom lambda value (s) using linear interpolation predict(fit_binomial, heart$x[-train_ind, ], type = "class", s = 1/n)#> 1 #> [1,] "absence" #> [2,] "absence" #> [3,] "absence" #> [4,] "presence" #> [5,] "presence" #> [6,] "absence" #> [7,] "absence" #> [8,] "presence" #> [9,] "absence" #> [10,] "absence" #> [11,] "absence" #> [12,] "absence" #> [13,] "absence" #> [14,] "presence" #> [15,] "absence" #> [16,] "presence" #> [17,] "absence" #> [18,] "presence" #> [19,] "absence" #> [20,] "presence" #> [21,] "absence" #> [22,] "absence" #> [23,] "absence" #> [24,] "presence" #> [25,] "absence" #> [26,] "presence" #> [27,] "presence" #> [28,] "absence" #> [29,] "presence" #> [30,] "presence" #> [31,] "presence" #> [32,] "absence" #> [33,] "absence" #> [34,] "absence" #> [35,] "presence" #> [36,] "absence" #> [37,] "presence" #> [38,] "absence" #> [39,] "absence" #> [40,] "absence" #> [41,] "absence" #> [42,] "absence" #> [43,] "absence" #> [44,] "absence" #> [45,] "presence" #> [46,] "absence" #> [47,] "absence" #> [48,] "presence" #> [49,] "absence" #> [50,] "absence" #> [51,] "presence" #> [52,] "absence" #> [53,] "absence" #> [54,] "absence"# Multinomial n <- length(wine$y) train_ind <- sample(n, size = floor(0.8 * n)) fit_multinomial <- sgdnet(wine$x[train_ind, ], wine$y[train_ind], family = "multinomial", alpha = 0.25) predict(fit_multinomial, wine$x[-train_ind, ], s = 0.0001, exact = TRUE, type = "class")#> Error in NROW(x): object 'train_ind' not found# Multivariate gaussian regression, predict nonzero coefficients fit_mgaussian <- sgdnet(student$x, student$y, family = "mgaussian") predict(fit_mgaussian, type = "nonzero")#> $s0 #> NULL #> #> $s1 #> [1] 7 #> #> $s2 #> [1] 7 #> #> $s3 #> [1] 3 7 #> #> $s4 #> [1] 2 3 7 #> #> $s5 #> [1] 2 3 7 #> #> $s6 #> [1] 2 3 7 #> #> $s7 #> [1] 2 3 4 7 #> #> $s8 #> [1] 2 3 4 7 19 #> #> $s9 #> [1] 2 3 4 5 7 10 19 #> #> $s10 #> [1] 2 3 4 5 7 10 11 19 #> #> $s11 #> [1] 1 2 3 4 5 7 8 10 11 18 19 #> #> $s12 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s13 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s14 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s15 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s16 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s17 #> [1] 1 2 3 4 5 7 8 9 10 11 18 19 #> #> $s18 #> [1] 1 2 3 4 5 7 8 9 10 11 12 16 18 19 #> #> $s19 #> [1] 1 2 3 4 5 7 8 9 10 11 12 16 18 19 #> #> $s20 #> [1] 1 2 3 4 5 7 8 9 10 11 12 16 18 19 21 #> #> $s21 #> [1] 1 2 3 4 5 7 8 9 10 11 12 16 18 19 21 #> #> $s22 #> [1] 1 2 3 4 5 7 8 9 10 11 12 16 18 19 21 #> #> $s23 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 21 #> #> $s24 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 21 #> #> $s25 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 21 #> #> $s26 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 21 #> #> $s27 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s28 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s29 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s30 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s31 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s32 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s33 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s34 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 21 #> #> $s35 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 #> #> $s36 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 #> #> $s37 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 #> #> $s38 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 #> #> $s39 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 #> #> $s40 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s41 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s42 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s43 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s44 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s45 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s46 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s47 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s48 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s49 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s50 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s51 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s52 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s53 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s54 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s55 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s56 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s57 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s58 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s59 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s60 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s61 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s62 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s63 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s64 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s65 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s66 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s67 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s68 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s69 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s70 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s71 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s72 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s73 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s74 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s75 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s76 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s77 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s78 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s79 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s80 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s81 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s82 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s83 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s84 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s85 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s86 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s87 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s88 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s89 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s90 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s91 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s92 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s93 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s94 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s95 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s96 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s97 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s98 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #> #> $s99 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 #>